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Introduction

Traditional load forecasting 
algorithms directly use historical 
data at the aggregation level. 

With the prevalence of smart 
meters, fine-grained sub profiles 
reveal more information about the 
aggregated load and further help 
improve the forecasting accuracy.
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Three strategies for aggregated load forecasting (ALF):
1) Top-down; 2) bottom-up; 3) clustering based. 

Is it possible to utilize 
both ensemble 
techniques and fine-
grained subprofiles to 
further improve the 
aggregated load 
forecasting accuracy?
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Load profile of one consumer

Clustering: divide consumers into different groups

Forecasting: develop forecasting model for each group

Aggregation: sum forecasts of all groups 

Primary idea: instead of treating the aggregated load as a whole, partitioning 
consumers into several groups and making predictions might help improve load 
forecasting.
A three-stage approach for aggregated load forecasting with smart meter data:
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Go further steps by ensemble learning?
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If there are different partitions of consumers, we can obtain different load forecasts. 

Combined model:
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How much weight should be given 
to each method for the optimal 
combination?

The n-th predicted loadReal load

Minimize 
MAPE

To determine the weights for the forecasts

It can be formulated as an LP problem.



9

2020 IEEE Sustainable Power & Energy ConferenceDeterministic ALF
Weights, MAPE, and RMSE of different forecasts with different groups

The MAPE and RMSE of the 
proposed ensemble method are 
4.05% and 202.88 which gain 4.71% 
and 3.83% improvements, 
respectively compared with the best 
individual forecast.

red line: actual load blue line: ensemble forecast
dashed lines: individual forecasts
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Can we update the weights in a rolling window-based manner?
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Ensemble weights over 17 weeks of the 
test set for all individual models.

Benefits of window-based method
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Combined model:

Online Convex Optimization 
(OCO) is a unifying framework for 
the analysis and design of online 
algorithms.
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 General formula

Distance Loss
Prevent information loss Integrate new sample

Passive Aggressive Regression

Passive: weights
do not change 
every time slot

Aggressive: 
weights change 
if losses are big 
enough
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Update the weights online for a better performance

Errors on test set after online learning

 All ensembles improve their 
forecasting performance through 
online learning.

 Nearly all ensembles outperform 
the benchmarks after online 
learning. 

 The proposed method has the 
highest accuracy and stability 
among all examined ensembles. 

SD: Standard deviation of the absolute percentage error
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Update the weights online for a better performance

MAPE over the course of the first day of online learning

The hour of break-even for all ensembles

 The proposed method has the earliest break-even after 2 hours for all metrics. 

 The other ensembles have the break-even approximately within one or two days. 

 An ensemble employing online learning is able to pay off at a relatively early point in time.
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Compared with deterministic forecasting, probabilistic load forecasts 
provide comprehensive information about future uncertainties.
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ModelingInputs Outputs

Residual Modeling 
& Outputs Ensemble

Scenario
Generation

Probabilistic 
Models

Two-stage Bootstrap Sampling
Temperature Scenario Generation

Probabilistic Net Load Forecasting
Pinball Loss Guided LSTM

Combining Probabilistic Forecasts
Conditional Residual Modeling

How to obtain probabilistic forecasting?
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Pinball loss (PL) and Winkler Score (WS) assess the calibration and sharpness 
simultaneously.
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Performance of overall quantiles Performance of extreme quantiles

Average Coverage Error (ACE) evaluate the reliability of the forecasts.

Performance of an certain interval
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Quantile regression averaging 
(QRA), a special form of quantile 
regression, is a kind of model 
averaging method.

LASSO Quantile Regression Averaging

Factor Quantile Regression Averaging

PCA
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Similar to deterministic forecasting……
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Error metric comparison for all ensemble methods with a Prediction Interval of 90%.

 The two naive benchmarks are obtained by directly forecasting the total 
loads without dimension reduction and clustering.

 Benchmark 2 updates the weights in a rolling window-based approach, 
while Benchmark 1 does not.
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Combined model:

 General formula

Distance Loss
Prevent information loss Integrate new sample
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• General Formula

• L2-distance :

• 𝜀𝜀-insensitive
quantile loss : 

• Solving KKT conditions: 
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• General Formula

• L2-distance :

• 𝜀𝜀-insensitive
quantile loss : 

• Solving KKT conditions: 𝜀𝜀 1-𝜀𝜀

𝑞𝑞-1
𝑞𝑞
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• Batch quantile regression

• Access to whole data sequence

• «Statistical height» implicitly given

• Online quantile regression

• Only access to one sample per round

• «Statistical height» collapses → Real value

• 𝜀𝜀-insensitive quantile: Preserve «statistical height»

Mechanism of Quantile Passive Aggressive Regression
 Extension to probabilistic forecasting: ε-insensitive loss ->  ε-insensitive quantile loss
 ε-insensitive region: Preserve «quantile height» between 𝑦𝑦𝑞𝑞 and 𝑦𝑦
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Errors on test set after online learning

The performance on Irish load data

*QSGD: Quantile Stochastic Gradient Descent
*QPAR: Quantile Passive Aggressive Regression
*QNN: Quantile Neural Network

Errors on test set after batch learning

 All ensembles outperform the benchmarks after online learning except QNN
 The proposed method has the highest accuracy regarding pinball loss and winkler score
 A substantial performance improvement can be achieved by ensembles incorporating 

online learning.

*Window OPT: window-based optimization
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QSGD online forecast over one week

QPAR online forecast over one week
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The performance on Irish load data

ACE over the course of the first two months of online learning

The hour of break-even for all ensembles

 The proposed QPAR has earliest WKS break-even

 QSGD has earliest Break-even for ACE and PBL

 Online learning enables to outperform batch approach within a month.
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Static
ensemble

Rolling window-
based ensemble

Online
ensemble

Generate 
ensembles

Combine
ensembles

Clustering Individual 
forecasting Aggregation

Deterministic
forecasting

Probabilistic
forecasting QRA Rolling window-

based QRA
Quantile 

PAR

Convex 
problem

Rolling window-
based ensemble PAR model
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 High quality point forecasting can be generated by making full use of 
the fine grained smart meter data;

 On this basis, we can utilize ensemble techniques to further improve 
the forecasting accuracy;

 Online learning can be a powerful tool in short-term load forecasting by 
integration new information and the proposed modified PAR model is 
very suitable in this context, especially as an online ensemble method;

 PAR model can be further extend to quantile PAR model using quantile 
regression averaging for probabilistic forecasting.
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Thank you for your attention
Yi Wang | yiwang@eeh.ee.ethz.ch | www.eeyiwang.com 
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