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Content of the presentation

Context:
Why do we need forecasts in local energy communities ?

Methodology:
How can we provide privacy by-design forecasting models ?
Federated learning = All data are kept local
Horizontal (cross-series) learning = deal with users with different history
Differential privacy = to prevent inference of raw data from the trained model

Case study for analyzing the value of collaborative learning

Conclusions (take home messages) & perspectives




Local energy communities e

Context: The integration of distributed energy resources (DER), such as
photovoltaics and electric vehicles, complicates the operation states of
the power distribution grids.

Global problem: nodal voltage may violate frequently (issues for
equipment).

Targeted solution: To proactively manage local energy exchanges, e.g.,
through local energy communities (LECs).

However, to ensure optimal coordination between resources, the
community needs to be informed with accurate predictions of the

future system state.
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Goal of the work

Develop a new framework for the short-term probabilistic forecasting
of nodal voltage magnitudes, exploiting the information from smart
metering devices.

Nodal voltages are governed by intricate:

* time correlations o

* space dependencies arising from network (O)—
constraints (i.e., neighboring buses are likely
to exhibit similar voltage patterns).




Quantifying the value of collaboration

Case study:

IEEE European Low Voltage Test Feeder
Multi-horizon of 8 intervals of 30 minutes (i.e., 4

hour ahead)
A look-back window of k
hours) is selected to capture past dynamics
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Quantifying the value of collaboration

1) (Non-private) centralized models relying on complete information, i.e., an ideal (but unrealistic)
case where each end-user shares its private data to form a single database, from which the
community manager trains a single model.
2) Fully private models, where a different model is trained by each end-user based only on its own
private data.

PERFORMANCE AND TRAINING TIME OF DIFFERENT MODELS.

Quantile loss over a test set of 96 days for 57 end-users:

Model Centra“tzi?r?e [min] Loct (prit\ilslt:)[min]
QLtOt [pul (epochs) QLtOt [pul (epochs)
Prob-Persist - - 0.210 -
Prob-Avg 0.319 - 0.192 -
QRF 0.048 148 0.156 172
QGBDT 0.041 64 0.151 76
DFFNN 0.043 10 (33) 0.144 16 (27)
LSTM 0.034 52 (18) 0.186 63 (4)
BLSTM 0.032 88 (16) 0.172 105 (4)
A-BLSTM | 0.192 54 (11) - -

* High differences in performance between centralized
and local models, which reflects the importance of
capturing nodal dependencies between voltage levels

* RNNs fail with data scarcity




Towards privacy-preserving forecasting

o

Specific problem: Traditional algorithms assume that private data can be

freely accessed from a centralized location.

The nodal (e.g., smart meter) data are owned by end-users, who may be
reluctant to share this information (as it may reveal private aspects such as
home occupancy, routines, and usage of specific appliances).

=>» It is important to implement new collaborative learning strategies,
leveraging the raw data of all end-users (capture dependencies among
stakeholders), while complying with privacy requirements.




Vertical versus Horizontal learning

Client A Client B §
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Vertical versus Horizontal learning

Horizontal learning Vertical learning
A A B
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Sample 5 . . . Intuitively more suited for capturing dependencies between clients
Sample 6 . . . More collaborative by design = less prone to trust issues
All clients need to have the same history (database is limited to the
Data efficient & more samples to train the model client with the shortest history)

Can handle cold-start forecasting (for clients with very
little history)

Global model = Cross-series learning for space

dependencies ES H M m




Horizontal Federated Learning (FL)

Federated learning is a distributed approach where a community of clients is
coordinated by a central server to learn a global model, without sharing any raw

client data.

. Irp1 FL,dprivate local data stays local, and only the trained model parameters are
shared.

=>» FL provides the privacy of local data
=>» FL avoids expensive data transfer

* FL support an arbitrary (even dynamic) number of client nodes, which are
coordinated through one central server

* FL naturally hedge against local data scarcity




Federated Averaging algorithm

[] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and

B. A. y Arcas. Communication-efficient learning of deep

networks from decentralized data. In Proc. of AISTATS

pages 1273—1282. PMLR, 2017.
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(1) the server initializes the parameters
of the model

(2) the server broadcasts the global
model to the users

(3) each selected user performs local
computations on its private dataset, and
computes the new (locally) optimized
model

(4) The local updates are then uploaded
to the server

(5) The new global model is then
computed, and the procedure is iterated
until convergence
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Limitations of Federated Learning

* During the federated learning, the model can be accessed by
adversaries to infer raw local information.

* It has been shown that trained models may be reverse-engineered to
extract detailed input information from the end-users involved in the

training phase

* Encrypted computations can be used to protect the training

procedure, but
* possibility to break current cryptographic functions
e encryption schemes can be computationally expensive




Differential Privacy (DP)

e DP enables to bound and quantify the privacy leakage of sensitive
information when performing learning tasks.

e DPis based on the notion of adjacent databases D and D’ , which differ by
the addition or removal of a single user.

(g, 6)-DP: Pr(M(D) € S) < efPr(M(D’) € S) + 6
=01 =02

g isthe privacy loss yielding an upper bound of how much the probability
of converging to a particular set of weights is affected by including (or
removing) a single client during training

* no bound on & with probability é

https://www.census.qgov/library/video/2021/protecting- m

privacy-in-census-bureau-statistics.htm|/




Proposed framework
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Quantifying the value of collaboration

Case study:

IEEE European Low Voltage Test Feeder
Multi-horizon of 8 intervals of 30 minutes (i.e., 4
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A look-back window of k
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A glimpse into the RNN model

The multi-horizon time-series forecasting problem can be naturally treated as a
seguence-to-sequence task.

Both encoder and decoder blocks are modeled by recurrent neural networks due to
their ability to represent inter-temporal dependencies.
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Utility privacy trade-off

There is an inherent trade-off between the performance of the prediction model and the privacy, i.e.,
(g, 8)-values:

e privacy breaches may occur at each round of the training

e privacy can be improved by reducing the expected number of end-users used at each round

e privacy can be controlled by the noise multiplier, which plays on the variance of the noise injected
during the weight update

Legend: .-eoeveee DFFNN BLSTM [-BLSTM ———s best private model €
E € 200
= 9| 0=0 . 0=025 € .. 0=075 oo
E 0.5 \N\ «/\\
Q) - ”‘
z | AN
2 _'-_____._-._.'/\’_\z.t _________________________ I | W) N A o T i I NN
= 0.11 S 2~ ‘ ) o N-UAA
E 0 05 o o .\/.NL,\—- . v r . . ! . . ; . ; ! ()
= 0 20 40 60 0 20 40 60 0 20 40 60

Number of training rounds Number of training rounds Number of training rounds




Main conclusions

Privacy-preserving forecasting model:
* to distribute the computations among the parties

* to derive a tradeoff between utility and privacy by embedding the
learning procedure into a differentially private mechanism.

Outcomes show that compact recurrent models are inherently more robust
to noise, which makes them natural candidates for the development of

privacy-enhancing techniques in renewable-dominated smart grids.

J.-F. Toubeau, F. Teng, T. Morstyn, L. V. Krannichfeldt and Y. Wang, "Privacy-Preserving
Probabilistic Voltage Forecasting in Local Energy Communities," in IEEE Transactions

on Smart Grid, 2022, doi: 10.1109/TSG.2022.3187557. m




Perspectives

* Tracking the privacy spent by each client, which is highly challenging since
the set of clients participating in each round is private.

* Developping state-of-the-art attack frameworks to have an empirical
evaluation of how much information an adversary can actually infer from
trained models.

e Using split learning, which is more tailored to perform vertical learning

e Connect with data markets, for data pricing or valuation approaches
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