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= As the world’ s largest coal consumer and coal-derived electricity
producer, China has long been suffering massive emissions of GHG
and air pollutants.
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From “Wikipedia”
= On Sep. 22, 2020, China declared "3060" carbon peak and neutrality
target, showing an ambitious goal toward carbon neutrality in the future.




High Penetration of Renewable Energy

W = It has become a global consensus to develop high penetration and
even 100% share of renewable energy toward carbon mitigation.
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Recent years have witnessed a rapid development of renewable-
dominated power systems in many regions across the world.
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Data Science and Technology

= The importance of data science is increasingly prominent, becoming
a supporting technology for energy society.

= Data science and technology enable a more reliable and efficient
operation of power grids. There is an urgent need to break through
the challenge of mining the value of massive heterogeneous data.

wEe ) Huawei and China Mobile

#ER = , use image recognition and
S ﬂ logistics data to make the
S R ony. g4 world's largest driverless
handling system at Tianjin

; P - - Port work successfully.
A 1= EE
. g T nmiea - rixae N ; . .
dsy - wx | r@| - The State Grid of China
vfﬁ""&ﬁiﬁ \ @ . . .
adl L s T @) , uses Image recognition to
- fﬁz\ri S fi automate power grid and
ERESFR Hoe E R SRR S !
= AR TR } transmission inspections.

A,



Data Sharing and Openness

= China has issued policies that call for accelerating the cultivation

of data factor markets:
= promoting the sharing of government data
= enhancing the valuation of social data resources
= strengthening data integration and privacy protection
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Challenges of Data Sharing

= Data sharing and market trading will bring win-win benefits.

= The lack of an efficient privacy protection technology becomes a
major concern for data sharing.

= A standardized data pricing mechanism is absent, which is critical
for incentivizing data sharing.

Privacy protection technology Data pricing mechanism
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Physical attributes Commercial attributes
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Data Attributes
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Data Valuation Method

Data mining Data circulation
Value added evaluation Market evaluation
Data 1 Digital products
Different Business | ========- > Data
( data sources ) Data 2 —V[ Department] gd--==—— market
Data 3 Digital products

« Different valuation methods at different stages for different scenarios

« Data valuation methods: Cost accounting, utility estimation, market equilibrium




Examples

Data Asset Pricing Function Market equilibrium pricing method
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Market Framework

A data market includes three types of entities: data suppliers/ve
ndors, market operator and data customers.

»The data supplier has data collection
) equipment and can collect a large
. amount of raw data.

7"\ Information Information | # ..
vendor customer / /1 O

»The market operator is responsible
S f‘ for operating the data market,
- ~ oner processing the original data,
-~ ' transforming data into commodities
,and publishing data prices.

Optimization .~

»Data customers have demands and
expect to obtain data and create
value realization.




= How to quantify the economic value of a package of data assets—
Data Pricing Function
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Generalized data pricing process

Calculation the quality of
information set X

information entropy, etc.
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(2) Calculate the utility of the data.
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impact upon a real-world scenario.
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il Based on  photovoltaic  output prediction, historical

meteorological and PV power datasets are priced.

Information valuation process
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Machine learning Future PV power

Initialization: j=0, N=No (N is the number of
information samples)
repeat
Calculation of Shannon entropy: h;=h(X;)
Calculation of non-noise ratio: zj=z(X;)
Calculation of information quality: g;=q(h;, 1)
=i+l
until j>N
Selection of utility function index:
Prediction accuracy o
Initialization of utility function: U(q)
for j=0 to N do
Calculation of utility function: U;=U(q;)
end for
Fitting utility function based on U;
Calculation of economic cost C(d) by unit
commitment model




Data Quality

In the renewable energy prediction scenario, Shannon entropy and non-
noise ratio are selected for data quality calculation.
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Data Quality

Practical interpretation of Shannon entropy

Suppose that there is a piece of information describing an event A, and the
probability of event A is "p(A)" . Shannon entropy is used to evaluate the
amount of information available, and judge useless information.

Useless information 1: The information describing an event which always
occurs, whose probability is close to 1. This information is common sense.

Useless information 2: The information describing a rare event which hardly
happens. This information is far from reality.
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! (1) Training Stage: feature extraction of
' data and training of prediction model.

! (2) Prediction stage: the trained model is
' used for prediction, and finally the
| prediction results are generated.

|
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Case Studies

» The prediction accuracy (utility) is regressed in an exponential form with
respect to the Shannon entropy and non-noise ratio (data quality) of
different datasets.

» In contrast to SVM, a larger dataset helps neural network to achieve a lower
prediction error.
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Case Studies

» For online tests, prediction accuracy shows a strong positive relation with
information quality measured by both Shannon entropy and non-noise ratio.

» In contrast to the existing studies measured by data size, Shannon entropy
demonstrates a better performance in capturing the relationship with accuracy.
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Case Studies

’ > The IEEE-30 bus system is selected to calculate data economic value.

> The forecast results are input into the unit commitment model, generating
the day-ahead scheduling while obtaining the system operation costs.
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» The system cost decreases with the increase of photovoltaic prediction
accuracy. The cost reduction can be defined as the economic value of data.

» However, the marginal data value declines with the increase of accuracy.
D eixy
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Discussions

> For the same dataset, we are curious about the economic value of different
algorithmes.

> In real-world cases, the computation burden of different algorithms can
lead to the diversity in load consumption of servers.

> Utility efficiency=data economic value/computation time ($/s)
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