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Backgrounds

What is Probabilistic Load Forecasting?

PLFs can be in the form of quantiles, intervals, or density functions.
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Backgrounds

 The integration of distributed renewable energy, energy storage, and the

implementation of demand response.

 The stochastic mathematical techniques has been applied to power

systems operation and planning.

Why we need probabilistic load forecasting?

In the year of 2017, China

Distributed PV capacity

19.44GW

Grow rate

360%

Percentage

36.6%
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Backgrounds

Off-the-shelf regression methods

 Linear regression

 ANN (Artificial Neural Network)

 SVM (Support Vector Machine)

 GBRT (Gradient Boosting Regression Tree)

 RF (Random Forest)

 Quantile regression

 Gaussian Process regression

 Hate tedious mathematic derivation

 Put more emphasis on how load forecasting works

Y=f(X)
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From point load forecasting to probabilistic forecasting?

ModelingInputs Outputs

Residual Modeling 

& Outputs Ensemble

Scenario

Generation

Probabilistic 

Models

Two-stage Bootstrap Sampling

Temperature Scenario Generation
Probabilistic Net Load Forecasting

Pinball Loss Guided LSTM
Combining Probabilistic Forecasts

Conditional Residual Modeling

Predictions are ineluctably vitiated by errors, originating from noise in

the explanatory variables (e.g. due to the chaotic nature of weather

conditions) as well as model misspecifications.
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Two-stage Bootstrap Sampling

1) The possible errors that Y* 

fall beside the point forecast

2) The uncertainty of the model m(x*) itself

According to the central limit theory:

Calculate the quantiles:

Uncertainty decomposition:

Basic Idea
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Two-stage Bootstrap Sampling

Framework
Alpha-Bootstrap on Training Dataset

Bootstrap on Residuals

Probabilistic Forecasting
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Two-stage Bootstrap Sampling

Resample training dataset:

Alpha-Bootstrap on Training Dataset

Train M models:

Variance Estimation:
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Two-stage Bootstrap Sampling

Bootstrap on Residual

Conduct Forecasting:

Calculate Error:

Build Regression Models:

Estimate Variance:

Bootstrap Sampling:

First Stage:

Strong learners: GBRT, RF 

M=200;

Second Stage:

Fast Learners: LR, LSSVM

P=2000;
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Two-stage Bootstrap Sampling

Results
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Two-stage Bootstrap Sampling

Results
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Probabilistic Net Load Forecasting

Problem Statement & Basic Idea

Behind-the-meter (BtM) PV are invisible to DSO which poses great 

challenges to real time situation awareness.

 How to estimate the capacity of  BtM PV?

 How to further improve the forecasting accuracy?
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Probabilistic Net Load Forecasting

Framework

Basic Idea

Key Problem
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Probabilistic Net Load Forecasting

PV Capacity Estimation

Estimated PV output

Optimal capacity
Estimate PV 

output

Calculate 

residual

Correlation 

analysis

A
d

ju
st th

e ca
p

a
city

Stop when R does not decrease

Initialize the capacity 

Estimate 

original load
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Probabilistic Net Load Forecasting

Data Simulation

System Advisor Model (SAM)

Developed by NREL

Net load separation
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Probabilistic Net Load Forecasting

Results

Original load

PV output

Residual

Net load

Forecasts for different parts Probabilistic forecasts：
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Probabilistic Net Load Forecasting

The higher, the better

Results

Competing methods

Point forecasting

Probabilistic forecasting
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Combining Probabilistic Forecasts

Ensemble Learning

QRNN

QGBRT

QRF

…

1) Generate models;

2) Prune models;

3) Combine models
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Combining Probabilistic Forecasts

From point forecast to probabilistic forecast

Point Forecasts Quantile Forecasts
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Combining Probabilistic Forecasts

Linear Programming Model

1) LP problem;

2) Model Selection;
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Combining Probabilistic Forecasts

Comparisons

Nine models
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Combining Probabilistic Forecasts

Results
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Combining Probabilistic Forecasts

Results
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Conclusions

Investigate how the load profile changes

Understand where the uncertainties are from

Combine different forecasting methods
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Welcome to Tsinghua
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