

Probabilistic Short-Term Load Forecasting

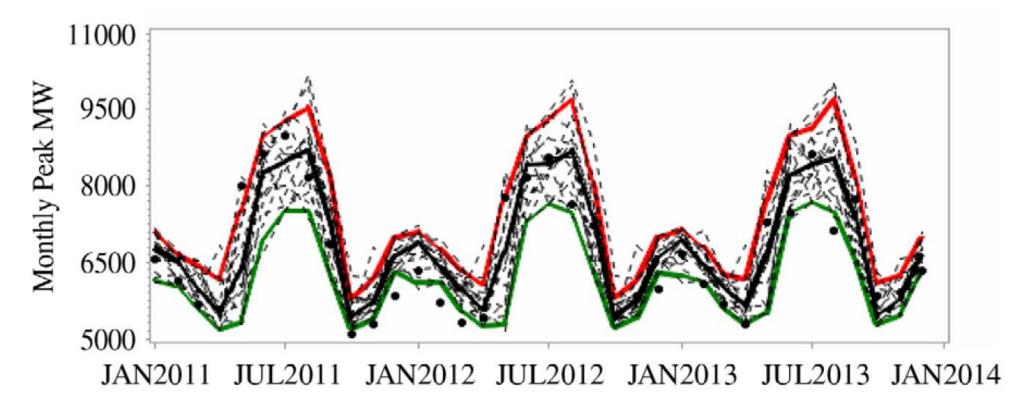
Yi Wang Tsinghua University

Contents

- Backgrounds
- •Two-stage Bootstrap Sampling
- Probabilistic Net Load Forecasting
- Combining Probabilistic Forecasts
- Conclusions

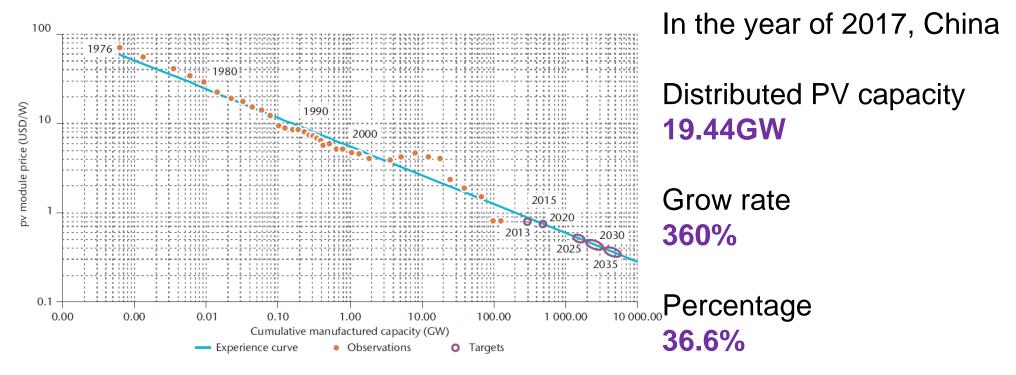
What is Probabilistic Load Forecasting?

PLFs can be in the form of quantiles, intervals, or density functions.



Why we need probabilistic load forecasting?

- The integration of distributed renewable energy, energy storage, and the implementation of demand response.
- The stochastic mathematical techniques has been applied to power systems operation and planning.

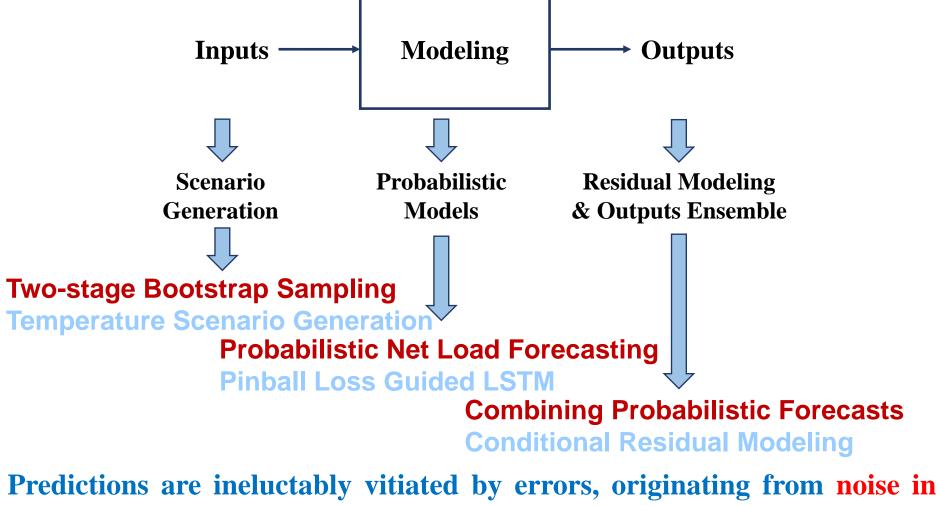


Off-the-shelf regression methods

Y=f(X)

- Linear regression
- ANN (Artificial Neural Network)
- SVM (Support Vector Machine)
- GBRT (Gradient Boosting Regression Tree)
- RF (Random Forest)
- Quantile regression
- Gaussian Process regression
- Hate tedious mathematic derivation
- Put more emphasis on how load forecasting works

From point load forecasting to probabilistic forecasting?



the explanatory variables (e.g. due to the chaotic nature of weather conditions) as well as model misspecifications.

Resample 1

Resample 2

Resample 3

Bootstrap

Two-stage Bootstrap Sampling Basic Idea

Uncertainty decomposition:

$$Var[Y^*|X = x^*] = Var[Y^* - \hat{m}(x^*)|X = x^*] \implies 1$$
 The possible errors that Y*
+ $Var[\hat{m}(x^*)|X = x^*]$ fall beside the point forecast

200

1000 1200 1400 1600 1800

Origin Dataset

2) The uncertainty of the model $m(x^*)$ itself

According to the central limit theory:

$$\frac{Y^* - E[\hat{Y}^*]}{\sqrt{Var[Y^* - \hat{m}(x^*)] + Var[\hat{m}(x^*)]}} \sim N(0, 1)$$

Calculate the quantiles:

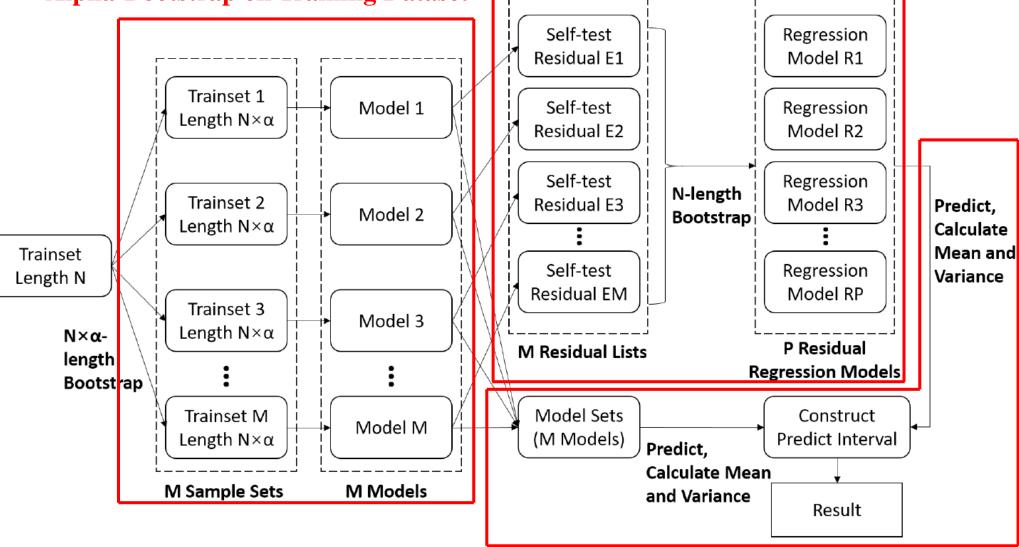
$$\overline{\hat{Y}^*} \pm z_{1-\beta/2} \sqrt{Var[Y^* - \hat{m}(x^*)] + Var[\hat{m}(x^*)]}$$

Tsinghua

Framework

智慧能源实验》

Energy Intelligence Laboratory



Probabilistic Forecasting

Bootstrap on Residuals

Alpha-Bootstrap on Training Dataset

Resample training dataset:

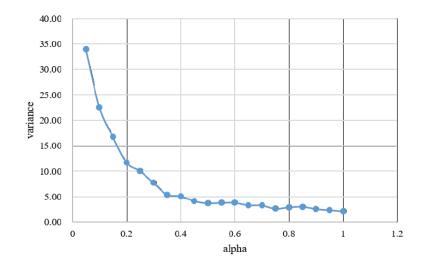
 Ts_1, Ts_2, \dots, Ts_M

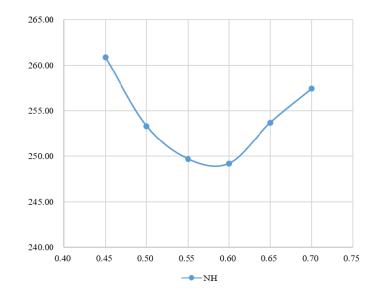
Train *M* models:

 m_1, m_2, \dots, m_M

Variance Estimation:

$$E[\hat{m}(x^*)] = \frac{1}{M} \sum_{i=1}^{M} m_i(x^*)$$
$$Var[\hat{m}(x^*)] = \frac{1}{M-1} \sum_{i=1}^{M} (m(x^*) - E[\hat{m}(x^*)])^2$$





Two-stage Bootstrap Sampling

Bootstrap on Residual

Conduct Forecasting:

 $m_1(x_i), m_2(x_i), ..., m_M(x_i)$

Calculate Error:

 $E_1, E_2, ..., E_M$ Bootstrap Sampling:

 T_1, T_2, \ldots, T_P

Build Regression Models:

 R_1, R_2, \ldots, R_P

Estimate Variance:

$$E[\hat{R}(x^*)] = \frac{1}{P} \sum_{i=1}^{P} R_i(x^*)$$

$$Var[\hat{R}(x^*)] = \frac{1}{P-1} \sum_{i=1}^{P} (R(x^*) - E[\hat{R}(x^*)])^2$$

First Stage: Strong learners: GBRT, RF M=200;

Second Stage: Fast Learners: LR, LSSVM P=2000;

Two-stage Bootstrap Sampling

Results

QUANTILE REGRESSION RESULT

	Quantile Random Forest								Quantile GBRT				
	MAPE	RMSE	PICP	Pinball	Winkler	MAPE	RMSE	PICP	Pinball	Winkler			
NH	3.07%	57.79	0.85	14.85	246.58	3.33%	59.26	0.85	16.37	264.16			
RI	3.04%	40.76	0.89	10.45	169.71	3.15%	39.65	0.88	11.15	178.77			
SEMASS	3.92%	95.03	0.80	24.77	433.44	4.05%	92.94	0.83	25.39	429.46			
СТ	3.52%	169.19	0.85	44.53	728.26	3.61%	164.51	0.86	47.01	745.64			
ME	2.86%	49.13	0.83	13.54	216.79	2.91%	48.31	0.86	13.92	214.39			
NEMASSBOST	3.19%	126.75	0.86	33.15	538.10	3.37%	127.57	0.84	35.70	559.95			
VT	3.98%	34.13	0.81	9.14	164.79	4.10%	33.93	0.81	9.51	150.46			
WCMASS	3.44%	89.13	0.88	24.32	377.85	3.55%	88.13	0.84	25.53	406.75			

FRAMEWORK IN THIS PAPER WITH LSSVM REGRESSION

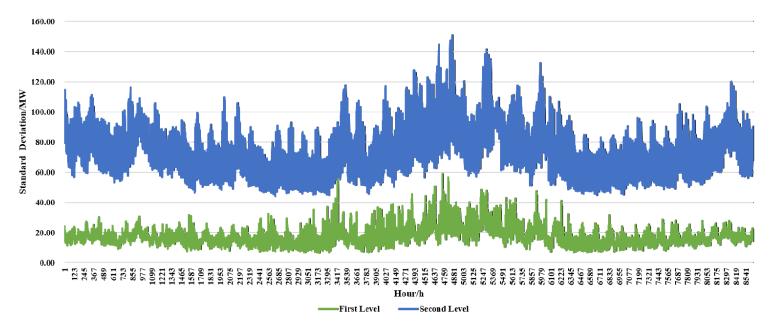
	Random Forest Based								GBRT Based				
	MAPE	RMSE	PICP	Pinball	Winkler	MAPE	RMSE	PICP	Pinball	Winkler			
NH	3.21%	57.50	0.88	15.50	246.00	3.21%	57.50	0.88	15.50	246.00			
RI	3.13%	39.34	0.90	10.45	165.21	3.18%	39.70	0.90	10.60	166.00			
SEMASS	3.96%	91.00	0.87	24.10	387.00	3.99%	91.60	0.85	24.20	394.00			
СТ	3.60%	165.00	0.88	44.30	702.00	3.52%	163.00	0.90	43.70	691.00			
ME	2.83%	47.50	0.90	13.10	200.00	2.86%	47.80	0.90	13.20	201.00			
NEMASSBOST	3.24%	124.00	0.88	33.10	519.00	3.27%	125.00	0.88	33.30	521.00			
VT	4.01%	33.30	0.83	9.11	155.00	4.10%	33.90	0.83	9.26	157.00			
WCMASS	3.40%	86.07	0.90	23.37	372.74	3.46%	86.90	0.89	23.60	377.00			

Two-stage Bootstrap Sampling

Results

COMPARE WITH QUANTILE REGRESSION

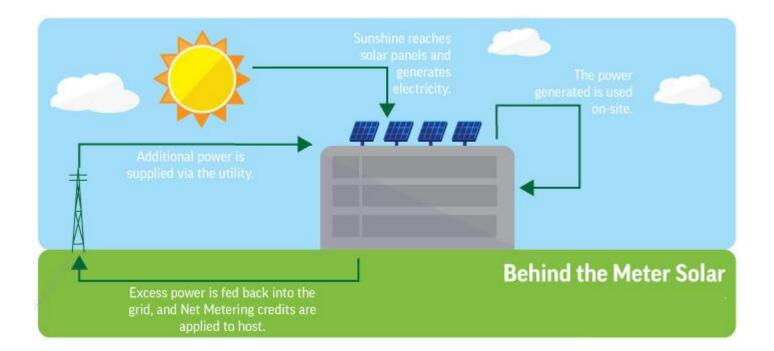
Random Forest Based							GBRT Based						
	MAPE	RMSE	PICP	Pinball	Winkler	MAPE	RMSE	PICP	Pinball	Winkler			
NH	0.14%	-0.51%	3.47%	4.37%	-0.24%	-0.12%	-2.97%	3.54%	-5.31%	-6.87%			
RI	0.09%	-3.47%	1.98%	0.01%	-2.65%	0.03%	0.12%	2.61%	-4.94%	-7.14%			
SE	0.04%	-4.24%	9.49%	-2.69%	-10.72%	-0.06%	-1.45%	2.84%	-4.67%	-8.26%			
СТ	0.08%	-2.47%	2.55%	-0.51%	-3.61%	-0.09%	-0.92%	4.63%	-7.04%	-7.33%			
ME	-0.03%	-3.31%	8.56%	-3.26%	-7.75%	-0.05%	-1.06%	5.45%	-5.19%	-6.25%			
NE	0.05%	-2.17%	2.48%	-0.14%	-3.55%	-0.10%	-2.02%	4.16%	-6.72%	-6.96%			
VT	0.03%	-2.44%	2.85%	-0.34%	-5.94%	0.00%	-0.10%	2.12%	-2.64%	4.34%			
WC	-0.04%	-3.44%	1.71%	-3.90%	-1.35%	-0.09%	-1.39%	6.44%	-7.57%	-7.31%			
AVER	0.04%	-2.76%	4.14%	-0.81%	-4.47%	-0.06%	-1.22%	3.97%	-5.51%	-5.72%			



Problem Statement & Basic Idea

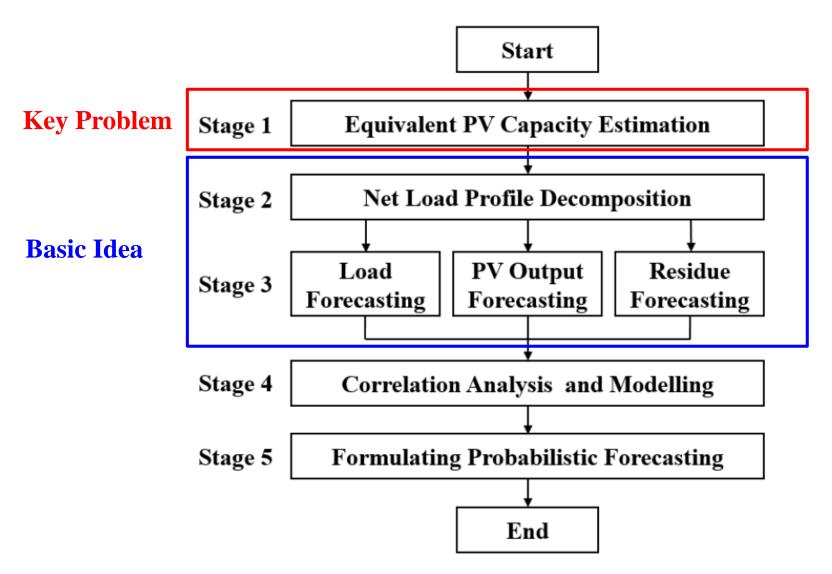
Behind-the-meter (BtM) PV are invisible to DSO which poses great challenges to real time situation awareness.

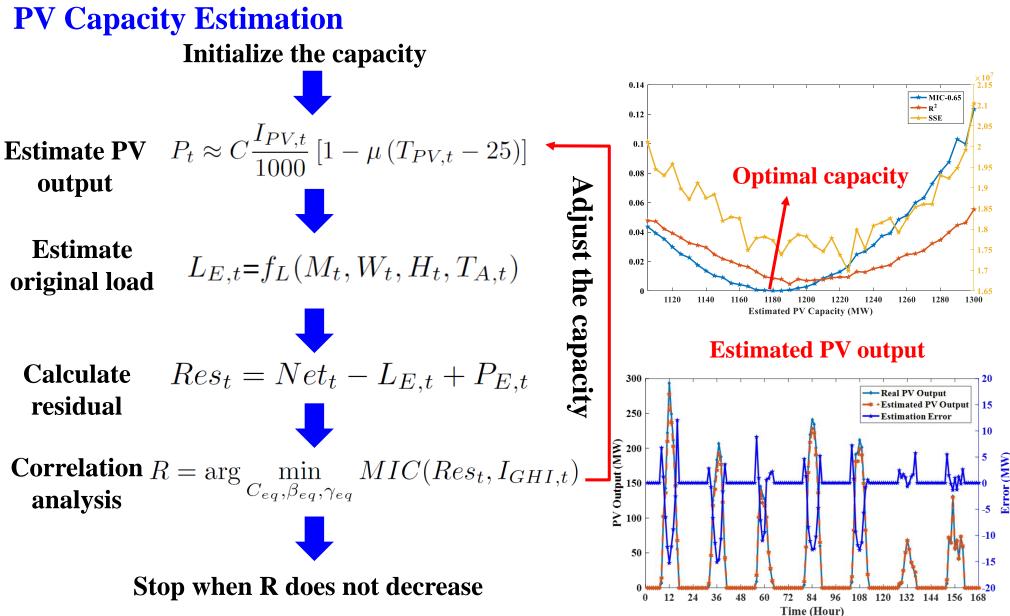
- \succ How to estimate the capacity of BtM PV?
- > How to further improve the forecasting accuracy?



Energy Intelligence Laboratory 智慧能源实验室 Probabilistic Net Load Forecasting () (演算大学) Tsinghua University

Framework





© 2015 清华大学

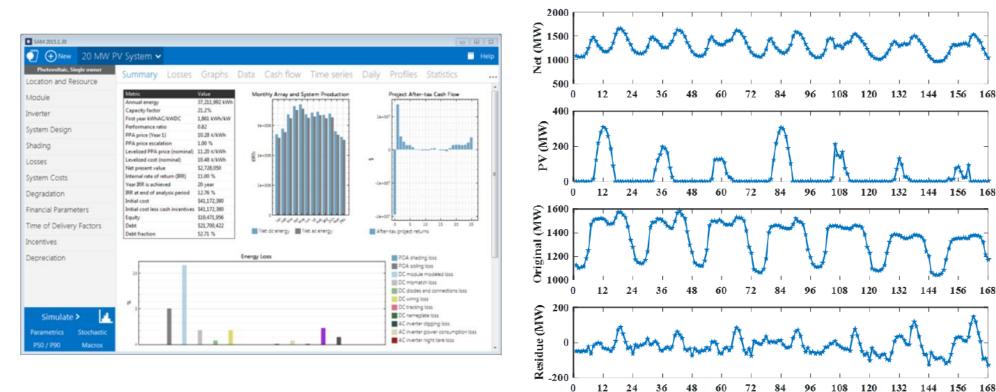
Energy Intelligence Laboratory 智慧能源实验室 Probabilistic Net Load Forecasting () (演算大学) Tsinghua University

Data Simulation

System Advisor Model (SAM) Developed by NREL

Net load separation

Time (Hour)

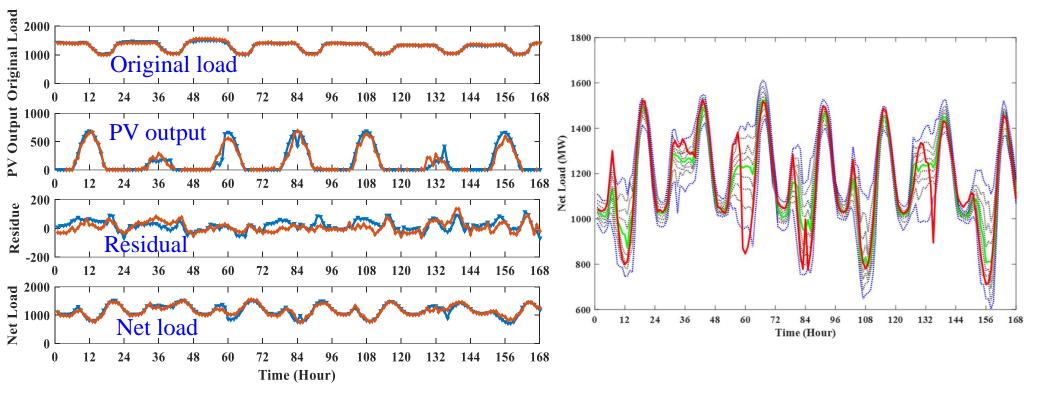


Energy Intelligence Laboratory 智慧能源实验室 Probabilistic Net Load Forecasting () バネス学

Results

Forecasts for different parts

Probabilistic forecasts:



Probabilistic Net Load Forecasting Tsingh

Results

Competing methods

	Point	Probabilistic
	Forecasting	Forecasting
Time Series	#1	#4
Considering Temperature	#2	#5
Considering Temperature	#3	#6
and Solar Irradiation		

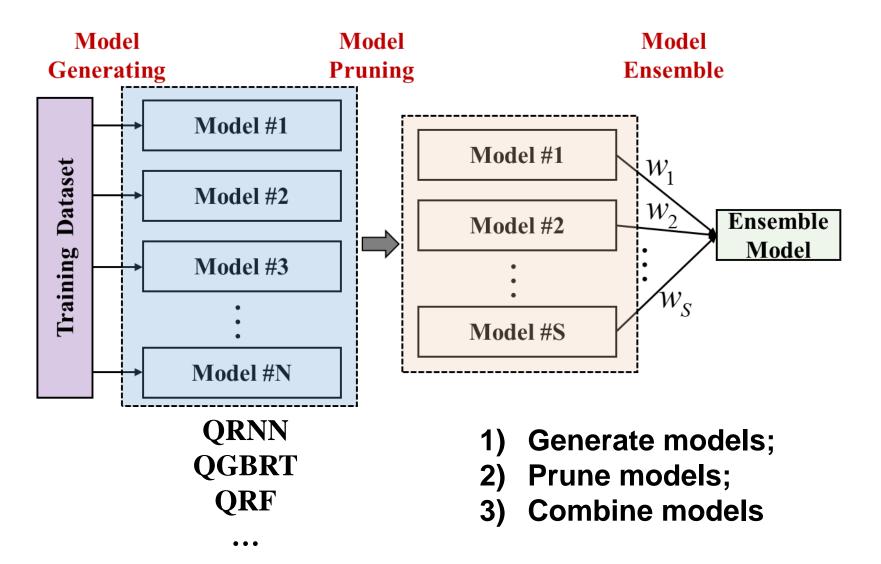
PV	Proposed	Method #1	Method #2	Method #3
Penetration	Method			
0	34.3/2.60	38.3/2.85	40.7/3.06	34.2/2.59
5%	60.1/3.37	94.6/5.28	101.5/5.47	61.4/3.59
10%	80.9/4.80	145.8/8.17	157.5/8.50	83.6/5.23
15%	109.1/7.28	221.8/13.1	209.7/12.3	115.0/8.25
20%	140.8/22.6	279.1/109.2	267.1/84.1	162.8/43.6

The higher, the better

Probabilistic forecasting

PV	Proposed	Method #4	Method #5	Method #6
Penetration	Method			
0	34.2	42.1	38.8	34.0
5%	43.4	60.1	58.1	45.7
10%	55.9	82.7	80.5	63.2
15%	69.2	108.7	107.5	80.3
20%	82.5	135.2	133.7	97.7

Ensemble Learning



Energy Intelligence Laboratory 智慧能原实验室 Combining Probabilistic Forecasts ()) 济洋大学

From point forecast to probabilistic forecast

$$f_{e}(\mathbf{X}_{n,t},\omega) = \sum_{n=1}^{N} \omega_{n} f_{n}(\mathbf{X}_{n,t},\mathbf{W}_{n}).$$

$$f_{e,q}(\mathbf{X}_{n,t},\omega_{q}) = \sum_{n=1}^{N} \omega_{n,q} f_{n,q}(\mathbf{X}_{n,t},\mathbf{W}_{n,q}).$$

$$f_{e,q}(\mathbf{X}_{n,t},\omega_{q}) = \sum_{n=1}^{N} \omega_{n,q} f_{n,q}(\mathbf{X}_{n,t},\mathbf{W}_{n,q}).$$

$$\hat{\omega}_{q} = \arg\min_{\omega_{q}} \sum_{t \in T} L_{n,t,q}(\sum_{n=1}^{N} \omega_{n,q} f_{n,q}(\mathbf{X}_{n,t},\mathbf{W}_{n,q}), y_{t})$$

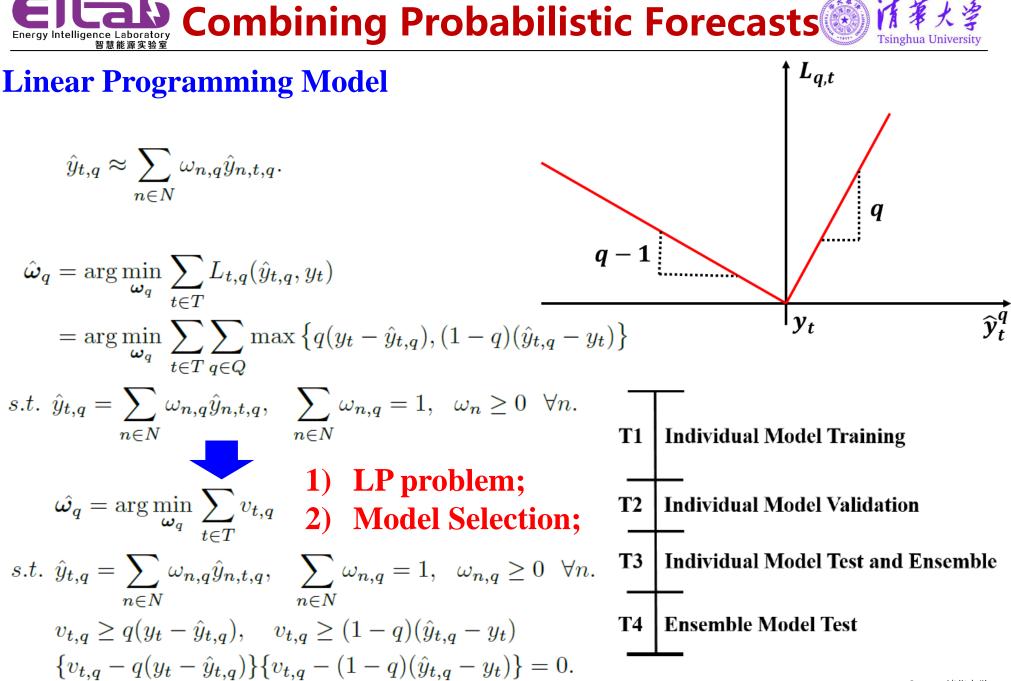
$$s.t. \sum_{n=1}^{N} \omega_{n} = 1,$$

$$\omega_{n} \ge 0, \quad \forall n \in \{1, \cdots, N\}.$$

$$f_{e,q}(\mathbf{X}_{n,t},\omega_{q}) = \sum_{n=1}^{N} \omega_{n,q} f_{n,q}(\mathbf{X}_{n,t},\mathbf{W}_{n,q}).$$

Point Forecasts

Quantile Forecasts



Energy Intelligence Laboratory 智慧能源实验室 Combining Probabilistic Forecasts () 消算大学

Comparisons Nine models

1) Naïve Sorting (NS): With each forecasting model producing Q quantiles, a total of $N \times Q$ quantiles can be observed (in some sense) by N forecasting models. By sorting these observations by descending order, a new sequence $\mathbf{S}_t = \{S_{t,j}, j = [1, Q \times N]\}$ can be obtained. And therefore the q-th quantile is estimated as follows:

$$\hat{y}_{t,q} = S_{t,1+(q-1)N}.$$

2) Median Value (MED): The median value of the N q-th quantiles is selected as the final quantile:

$$\hat{y}_{t,q} = S_{t,1+(q-1)N+[N/2]}.$$

3) Simple Averaging (SA): The simple averaging strategy applies equal weights to different methods:

$$w_{n,q} = 1/N.$$

Then, the final combined forecasts are calculated according to Eq. (15).

4) Weighted Averaging (WA): The basic idea of the weighted averaging method is that methods with higher accuracy should be given higher weights:

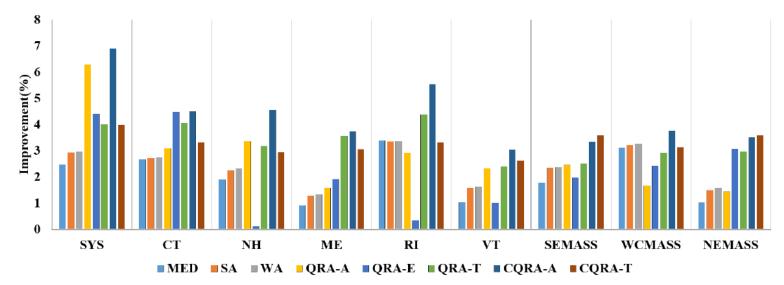
$$w_{n,q} = \frac{\frac{1}{L_{n,q}}}{\sum_{n \in N} \frac{1}{L_{n,q}}}$$

Constraints Quantiles	With Constraints	Without Constraints
Averaged Quantiles	5) QRA-E	8) CQRA-E
All Quantiles	6) QRA-A	9) CQRA-A
Targeted Quantiles	7) QRA-T	CQRA-T (Proposed)

Results

PINBALL LOSSES OF THE INDIVIDUAL AND COMBINATION METHODS FOR DIFFERENT ZONES

Zones	SYS	СТ	NH	ME	RI	VT	SEMASS	WCMASS	NEMASS
BI	288.563	81.478	27.216	18.146	21.756	12.426	42.307	41.939	63.685
NS	327.569	95.058	31.586	19.003	25.738	13.247	48.817	47.041	71.873
MED	281.607	79.359	26.713	17.981	21.044	12.300	41.570	40.676	63.048
SA	280.375	79.322	26.618	17.916	21.053	12.233	41.336	40.638	62.752
WA	280.266	79.306	26.600	17.908	21.049	12.227	41.329	40.616	62.706
QRA-E	276.417	77.995	27.184	17.806	21.683	12.303	41.484	40.949	61.793
QRA-A	271.519	79.037	26.330	17.864	21.140	12.145	41.295	41.252	62.783
QRA-T	277.487	78.313	26.380	17.523	20.847	12.135	41.271	40.752	61.849
CQRA-E	356.527	100.925	33.829	22.767	26.540	15.616	51.765	51.544	79.131
CQRA-A	277.510	78.870	26.437	17.610	21.059	12.109	40.847	40.672	61.491
CQRA-T	269.953	77.961	26.034	17.492	20.619	12.061	40.941	40.422	61.524



Results

Quantiles Models	10-th	20-th	30-th	40-th	50-th	60-th	70-th	80-th	90-th
#1	0	0	0	0.128	0.123	0	0.015	0	0.102
#2	0	0	0	0.177	0.022	0.236	0.154	0.004	0
#3	0.036	0	0	0.041	0.255	0	0.123	0.302	0
#4	0.385	0.444	0.281	0	0	0.030	0	0	0.068
#5	0.165	0	0	0.200	0.298	0.339	0.092	0	0.134
#6	0.037	0.093	0.537	0.264	0	0	0.000	0.251	0
#7	0	0.131	0	0.071	0	0	0.265	0.051	0.218
#8	0	0.207	0.152	0	0.158	0.003	0.350	0.133	0
#9	0.377	0.047	0.030	0.117	0.143	0.392	0	0.206	0.333
#10	0	0.078	0	0	0	0	0	0	0
#11	0	0	0	0	0	0	0	0.052	0.145
#12	0	0	0	0	0	0	0	0	0
#13	0	0	0	0	0	0	0	0	0

Zones Models	SYS	СТ	NH	ME	RI	VT	SEMASS	WCMAS S	NEMASS
#1	0.102	0.144	0.231	0.015	0.001	0.355	0	0	0.196
#2	0	0	0	0.082	0.074	0.146	0.071	0	0
#3	0	0	0.031	0	0	0.079	0	0.196	0
#4	0.068	0	0.089	0.349	0	0	0.038	0	0
#5	0.134	0	0	0	0.272	0	0.199	0.318	0.199
#6	0	0	0.283	0.231	0.226	0.096	0	0	0.136
#7	0.218	0	0.058	0.058	0	0.082	0.166	0.218	0.049
#8	0	0.129	0.308	0.079	0.197	0	0.173	0.076	0.087
#9	0.333	0.341	0	0.185	0.021	0.243	0.290	0.192	0.333
#10	0	0	0	0	0	0	0	0	0
#11	0.145	0.267	0	0	0	0	0	0	0
#12	0	0	0	0	0.210	0	0	0	0
#13	0	0.119	0	0	0	0	0.062	0	0

Conclusions

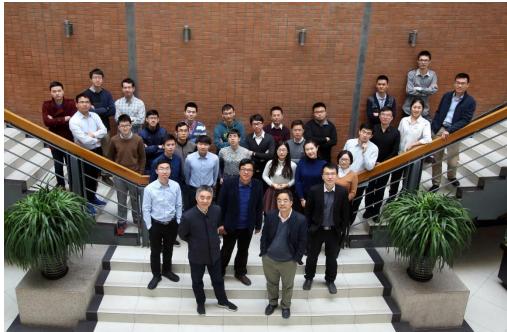
Understand where the uncertainties are from

Investigate

Investigate how the load profile changes

Combine different forecasting methods

Welcome to Tsinghua



- 1. <u>Yi Wang</u>, Ning Zhang, Yushi Tan, Tao Hong, Daniel Kirschen, and Chongqing Kang*, "Combining Probabilistic Load Forecasts", *IEEE Trans. Smart Grid*, in press.
- 2. <u>Yi Wang</u>, Qixin Chen, Tao Hong, and Chongqing Kang*, "Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges", *IEEE Trans. Smart Grid*, in press.
- 3. <u>Yi Wang</u>, Qixin Chen, Mingyang Sun, and Chongqing Kang* and Qing Xia, "An Ensemble Forecasting Method for the Aggregated Load with Sub Profiles", *IEEE Trans. Smart Grid*, in press.
- <u>Yi Wang</u>, Ning Zhang, Qixin Chen*, Daniel Kirschen, Pan Li, and Qing Xia, "Data-Driven Probabilistic Net Load Forecasting with High Penetration of Behind-the-Meter PV", *IEEE Trans. Power Systems*, in press.
- Dahua Gan, <u>Yi Wang</u>, Shuo Yang, and Chongqing Kang*, "Embedding Based Quantile Regression Neural Network for Probabilistic Load Forecasting", *Journal of Modern Power Systems and Clean Energy*, in press.
- 6. Dahua Gan, <u>Yi Wang</u>, Ning Zhang*, and Wenjun Zhu, "Enhancing Short Term Probabilistic Residential Load Forecasting with Quantile LSTM", *The Journal of Engineering*, in press.
- 7. Mingyang Sun*, <u>Yi Wang</u>, Goran Strbac, and Chongqing Kang, "Probabilistic Peak Load Estimation in Smart Cities Using Smart Meter Data", *IEEE Trans. Industrial Electronics*, in press.

Thanks!

