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1
Economic 

Information
Statistic Bureau

GDP、CPI、PMI（Purchasing 

Managers Index）、Sales Value、
Prosperity Index

Per Month Non structural

2
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Data
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Platform

Electrical Load、Output、Power 

Quality、Temperature
15Min

Non structural

/Structural

3
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Data

Meteorological 

Bureau

Temperature、Humidity、
Rainfall

Per Day Structural

4
EV Charging 

Data

Charging-Pile

RTU

Current、Voltage、Charging 

Rate、State of Charge
15Min Structural

5

Customer 

Service Voice 

Data

Customer 

Service System
Customer Voice Data Real Time Non structural

10 million Smart Meters, 15min 60GB per day, 21TB per year. Volume

Variety VelocityValue???
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Participators and their businesses on the demand side

Chongqing Kang, Yi Wang, Yusheng Xue, Gang Mu, and Ruijin Liao, “Big Data Analytics in China’s Electric 

Power Industry”, IEEE Power and Energy Magazine, 2018, 16(3):54-65.
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Data Analytics is commonly dissected into three stages: descriptive analytics (what do the

data look like), predictive analytics (what is going to happen with the data), and

prescriptive analytics (what decisions can be made from the data).

Yi Wang, Qixin Chen, Tao Hong, and Chongqing Kang, “Review of Smart Meter Data Analytics: Applications,

Methodologies, and Challenges”, IEEE Trans. Smart Grid, in press.
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What is Customer Behavior ? One answer from sociological perspective:

 Customer behavior refers to the electricity consumption activities and related attitudes  of 
customers under a certain environment to maximize the overall utility.

 It has five basic parts: behavior subject, behavior environment, behavior means, 
behavior utility, behavior results. 

 We can also have two extensions from spatial and temporal perspectives.
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Retailers attempt to analyze customers’ electricity consumption behaviors, so that 

they can provide diversified and personalized services.

Can we identify the social-demographic information of the consumers?

Challenges:

1)Problem formulation;

2)High dimensional load data;

3)High time shift invariance;

Yi Wang, Qixin Chen, Dahua Gan, Jingwei Yang, Daniel Kirschen, and Chongqing Kang, “Deep Learning-

Based Socio-demographic Information Identification from Smart Meter Data”, IEEE Trans. Smart Grid, in press.
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 Among these ten questions, the accuracies of #2 (chief income earner 
has retired or not), #4 (have children or not), and #8 (cooking facility 
type) are higher than 75%; 

 The accuracies of #7 (number of bedrooms) and #9 (energy-efficient 
light bulb proportion) are lower than 60%; 

 The accuracies of the remaining questions are between 60% and 75%.
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Characteristics of Individual Smart Meter Data

Sparsity: only a small fraction of the time has higher electricity consumption while 

the rest approximates to zero. 

Diversity: load profiles are various with different customers and in different days, 

but it can be decomposed into different parts.

Yi Wang, Qixin Chen, Chongqing Kang, and Qing Xia, “Sparse and Redundant Representations-Based Smart 
Meter Data Compression and Pattern Extraction”, IEEE Trans. Power Systems, 2017, 32(3): 2142-2151. 
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Partial Usage Pattern (PUP)
Idea of Sparse Coding
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X DA Minimize the recovery error

Sparsity Constrains

Non-Negative Constrains

1) Search a redundant dictionary D that captures the features or

PUPs of load profiles as well as possible

2) Optimize the coefficient vector A of each load profile to

guarantee its sparsity and an acceptable reconstruction error.

Non-Negative Sparse Coding
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Ten most relevant PUPs for SMEs and residential customers

Shape Duration Peak times

SME Vaulted Long Dawn, working hours

Resident Sharp peak Short Morning, night
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Parameter RMSE MAE Accuracy F1

K-SVD 5, 80 0.099 0.060 0.874 0.793

k-means 80 0.120 0.180 0.786 0.752

PCA 5 0.111 0.167 0.771 0.764

DWT 5 0.141 0.327 0.667 0.688

PAA 6 0.112 0.181 0.706 0.725

Original 48 / / 0.735 0.724

Comparison with Different Techniques

TP TN
Accuracy

TP TN FP FN
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Problem Statement & Basic Idea

Behind-the-meter (BtM) PV are invisible to DSO which poses great 

challenges to real time situation awareness.

 How to estimate the capacity of  BtM PV?

 How to further improve the forecasting accuracy?

Yi Wang, Qixin Chen, Chongqing Kang, and Qing Xia, “Sparse and Redundant Representations-Based Smart

Meter Data Compression and Pattern Extraction”, IEEE Trans. Power Systems, 2017, 32(3): 2142-2151.
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Framework

Basic Idea

Key Problem
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PV Capacity Estimation

Estimated PV output

Optimal capacityEstimate 

PV output
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Stop when R does not decrease

Initialize the capacity 

Estimate 

original load

Yi Wang, Ning Zhang, Chongqing Kang, Miao Miao, Rui Shi, and Qing Xia, “An Efficient Approach to Power System

Uncertainty Analysis with High-Dimensional Dependencies”, IEEE Trans. Power Systems, 2018, 33(2): 2984-2994.
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Data Simulation

System Advisor Model (SAM)

Developed by NREL
Net load separation
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The higher, the better !

Results

Competing methods

Point forecasting

Probabilistic forecasting
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"abcabbcaaacabaabbaccbbbcbabb"

Passive occupancy

Active occupancy

Absence

Yi Wang, Qixin Chen, Chongqing Kang, and Qing Xia, “Clustering of Electricity Consumption Behavior Dynamics 
Toward Big Data Applications”, IEEE Trans. Smart Grid, 2016, 7(5): 2437-2447. 

The customers aggregated in the same cluster should share at least one similar 

characteristic.

 Characteristic Extraction

 Clustering Algorithm
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Which customers are suitable for 

demand response?
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With the prevalence of smart 

meters, fine-grained sub profiles 

reveal more information about the 

aggregated load and further help 

improve the forecasting accuracy.

Is it possible to utilize both ensemble 

techniques and fine-grained 

subprofiles to further improve the 

forecasting accuracy?

Yi Wang, Qixin Chen, Mingyang Sun, and Chongqing Kang and Qing Xia, “An Ensemble Forecasting

Method for the Aggregated Load with Subprofiles”, IEEE Trans. Smart Grid, 2018, 9(4): 3906-3908.
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 How to determine the number of clusters？

 The optimal number of clusters is different for different dataset？

The n-th predicted loadReal load

Minimize 

MAPE

To determine the weights for the forecasts

It can be formulated as LP problem.

Case studies on both residential load data and substation load data demonstrate the superior 

performance of the proposed ensemble method when comparing with the traditional direct 

or bottom-up forecasting strategies.
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Ensemble Learning

QRNN

QGBRT

QRF

…

1) Generate models;
2) Prune models;
3) Combine models

Yi Wang, Ning Zhang, Yushi Tan, Tao Hong, Daniel Kirschen, and Chongqing Kang, “Combining Probabilistic

Load Forecasts”, IEEE Trans. Smart Grid, in press.
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From point forecast to probabilistic forecast

Point Forecasts Quantile Forecasts
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Linear Programming Model

1) LP problem;

2) Model Selection;
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Comparisons

Nine models
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Results
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Results
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1. Smart Meter Data Compression Based on Load Feature Identification

2. A Combined Data-Driven Approach for Electricity Theft Detection

3. Typical Electricity Consumption Pattern Identification for Massive Consumers

4. Sparse and Redundant Representation-Based Partial Usage Pattern Extraction

5. Deep Learning-Based Socio-demographic Information Identification

6. Cross-domain Feature Selection and Coding for Household Energy Behavior

7. Clustering of Electricity Consumption Behavior Dynamics 

8. Load Profiling Based Personalized Price Design

9. Short-term Probabilistic Residential Load Forecasting with Quantile LSTM

10. An Ensemble Forecasting Method for the Aggregated Load With Subprofiles

Smart Meter Data Analytics
Data Management

Pattern Extraction

Socio-demographic Information

Customer Management

Load Forecasting
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2. Sparse Penalized Feature Selection

3. Quantile Regression Neural Network Model

4. Modeling Conditional Residual

5. Residential Load Forecasting

6. Net Load Forecasting with Behind-the-Meter PV

7. From Point Forecasts to Probabilistic Forecasts

8. From Quantile Forecasts to Density Forecasts

9. Combining Quantile Probabilistic Forecasts

10. Combining Density Probabilistic Forecasts

1. Introduction to Probabilistic Load ForecastingFundamentals

Uncertainty Modeling 

in Three Phases

New Forecasting 

Objects in Smart Grid

Forecasts 

Transformation

Forecasting Model 

Combination

Probabilistic Load Forecasting
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