

Smart Meter Data Analytics for Customer Behavior Modeling

Yi Wang Tsinghua University

2018-10-22

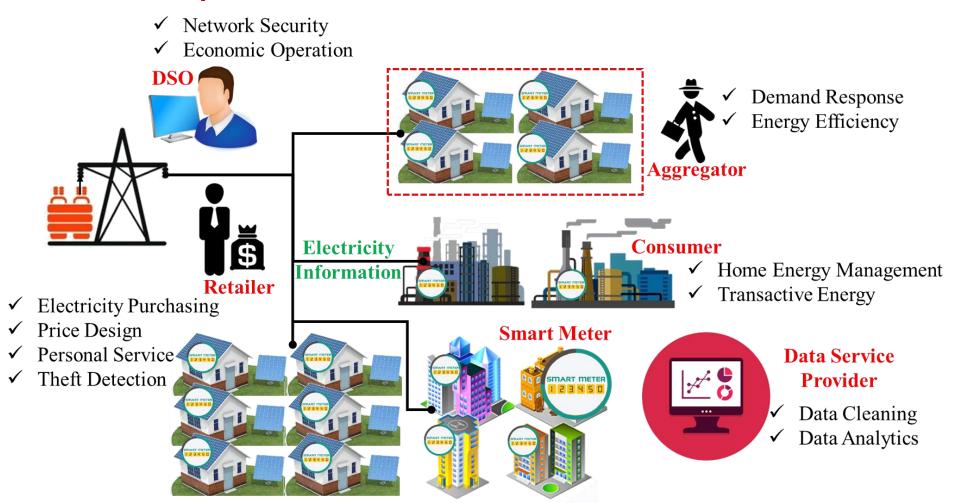
Backgrounds

⑧清莱大学	Energy Intelligence Laboratory 智慧能源实验室
-------	---

No.	System/ Data	Data Source	Data Type	Frequency	Data Structure
1	Economic Information	Statistic Bureau	GDP、CPI、PMI (Purchasing Managers Index) 、Sales Value、 Prosperity Index	Per Month	Non structural
2	Energy Consumption Data	Energy Efficiency Platform	Electrical Load、Output、Power Quality、Temperature	15Min	Non structural /Structural
3	Meteorological Data	Meteorological Bureau	Temperature、Humidity、 Rainfall	Per Day	Structural
4	EV Charging Data	Charging-Pile RTU	Current、Voltage、Charging Rate、State of Charge	15Min	Structural
5	Customer Service Voice Data	Customer Service System	Customer Voice Data	Real Time	Non structural

Backgrounds

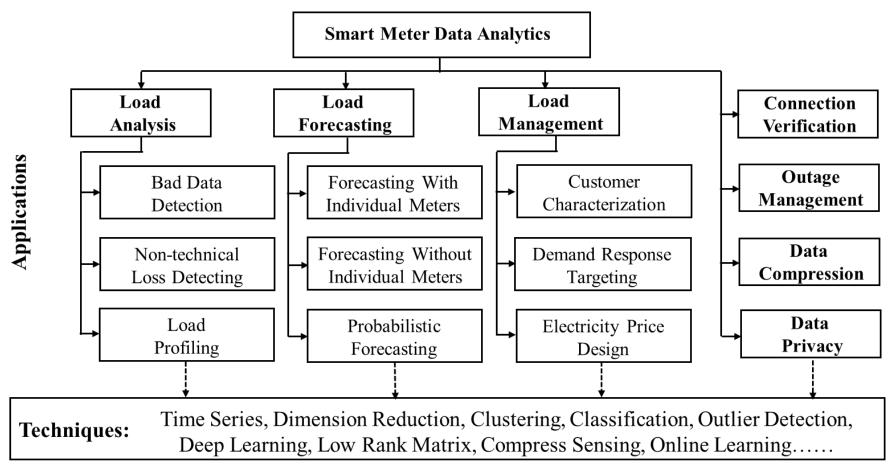
Participators and their businesses on the demand side



Chongqing Kang, <u>Yi Wang</u>, Yusheng Xue, Gang Mu, and Ruijin Liao, "Big Data Analytics in China's Electric Power Industry", *IEEE Power and Energy Magazine*, 2018, 16(3):54-65.

Backgrounds

Data Analytics is commonly dissected into three stages: **descriptive analytics** (what do the data look like), **predictive analytics** (what is going to happen with the data), and **prescriptive analytics** (what decisions can be made from the data).



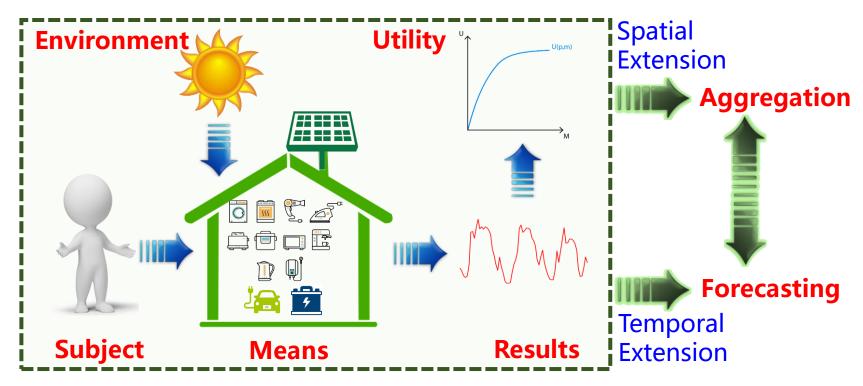
<u>Yi Wang</u>, Qixin Chen, Tao Hong, and Chongqing Kang, "Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges", *IEEE Trans. Smart Grid*, in press.

Customer Behavior

()) バギ大学 Energy Intelligence I ^{習慧}

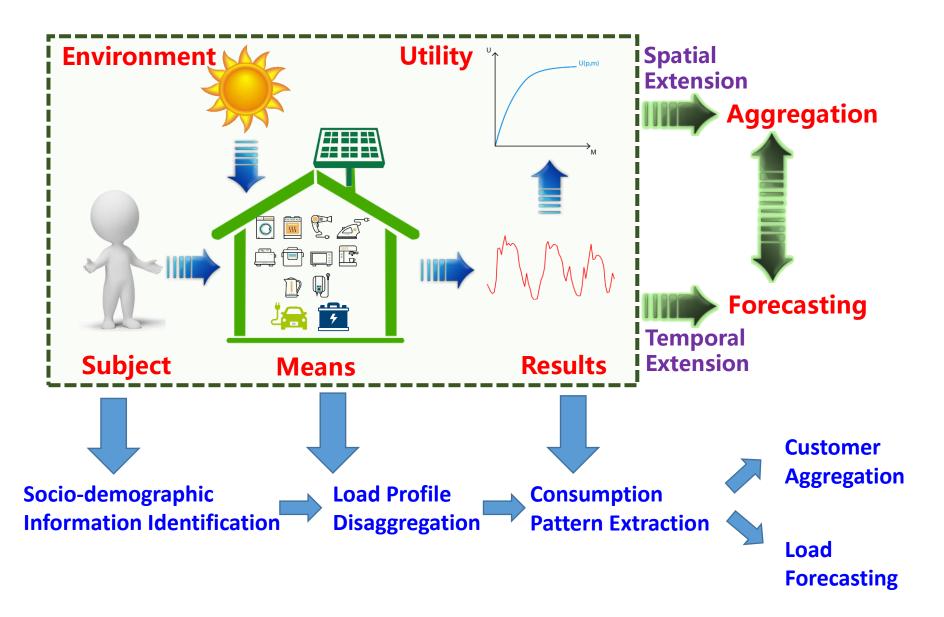
What is Customer Behavior? One answer from sociological perspective:

Customer behavior refers to the electricity consumption activities and related attitudes of customers under a certain environment to maximize the overall utility.



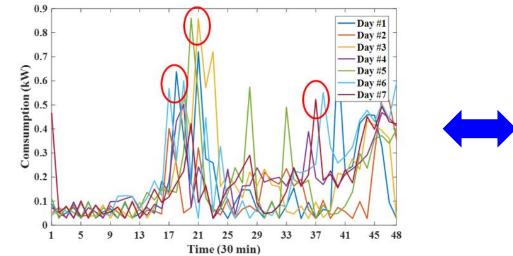
- It has five basic parts: behavior subject, behavior environment, behavior means, behavior utility, behavior results.
- > We can also have two extensions from spatial and temporal perspectives.

Customer Behavior



()) 消華大学 Eltab Energy Intelligence Laboratory 智慧能源実验室

Retailers attempt to analyze customers' electricity consumption behaviors, so that they can provide **diversified and personalized services**.



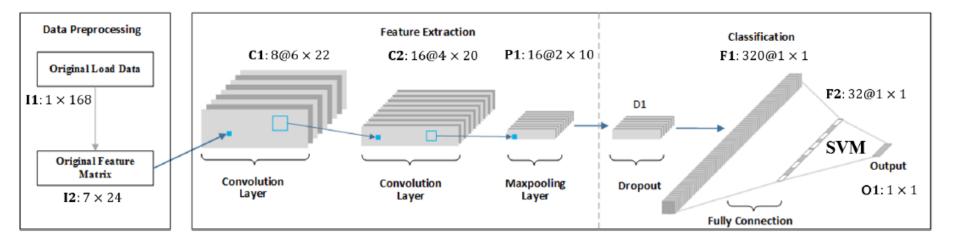
Can we identify the social-demographic information of the consumers?

Challenges: 1)Problem formulation; 2)High dimensional load data; 3)High time shift invariance;

<u>Yi Wang</u>, Qixin Chen, Dahua Gan, Jingwei Yang, Daniel Kirschen, and Chongqing Kang, "Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data", *IEEE Trans. Smart Grid*, in press.

No.	Question No.	Socio-demographic Information Question	Answers	Number
			Young(<35)	436
1	300	Age of chief income earner	Medium(35~65)	2819
			Old(>65)	953
2	310	Chief income earner has retired or not	Yes	1285
2	510	Chief meone carner has retired of not	No	2947
			A or B	642
3	401	Social class of chief income earner	C1 or C2	1840
			D or E	1593
4	410	Have children or not	Yes	1229
4	410	Have children of not	No	3003
5	450	House type	Detached or bungalow	2189
5	450	House type	Semi-detached or terraced	1964
~	152	And of the house	Old(>30)	2151
6	453	Age of the house	New(<30)	2077
			Very $low(<3)$	404
7	100	Number of body and	Low(=3)	1884
7	460	Number of bedrooms	High(=4)	1470
			Very High(>4)	474
0	4704	Cooking facility type	Electrical	1272
8	4704	Cooking facility type	Not Electrical	2960
0	4905	Energy afficient light hulb properties	Up to half	2041
9	4903	Energy-efficient light bulb proportion	Three quarters or more	2191
			Small(<100)	232
10	6103	Floor area	Medium(>100&<200)	1198
			Big(>200)	351

Socio-demographic Information



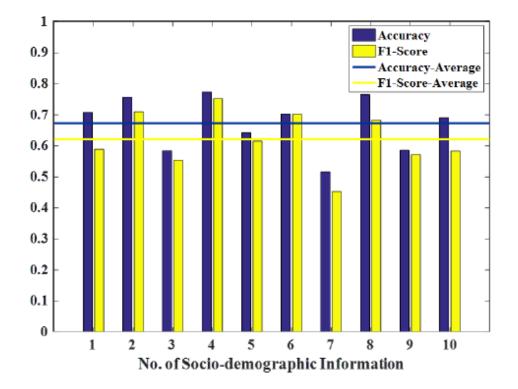
\mathbf{F}_1 scores of different methods

	SVM	LS	PS	SS	CS	Proposed	Improvement 1	Improvement 2
1	0.562	0.563	0.539	0.533	0.571	0.589	1.42%	3.15%
2	0.652	0.659	0.602	0.569	0.687	0.71	4.25%	3.35%
3	0.474	0.458	0.47	0.451	0.512	0.554	8.02%	8.20%
4	0.709	0.711	0.687	0.615	0.737	0.752	3.66%	2.04%
5	0.446	0.563	0.562	0.451	0.584	0.616	3.73%	5.48%
6	0.488	0.576	0.52	0.519	0.661	0.702	14.76%	6.20%
7	0.418	0.389	0.42	0.361	0.432	0.454	2.86%	5.09%
8	0.584	0.605	0.574	0.574	0.652	0.683	7.77%	4.75%
9	0.446	0.454	0.491	0.409	0.547	0.572	11.41%	4.57 %
10	0.539	0.538	0.516	0.499	0.552	0.583	2.41%	5.62%

Energy Intelligence Laboratory

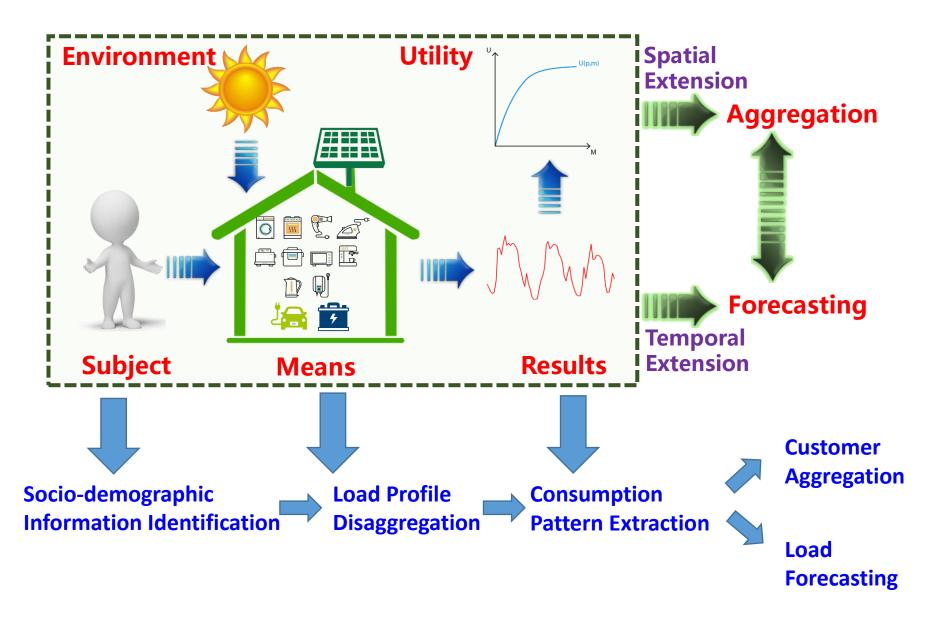
③清莱大学

Socio-demographic Information



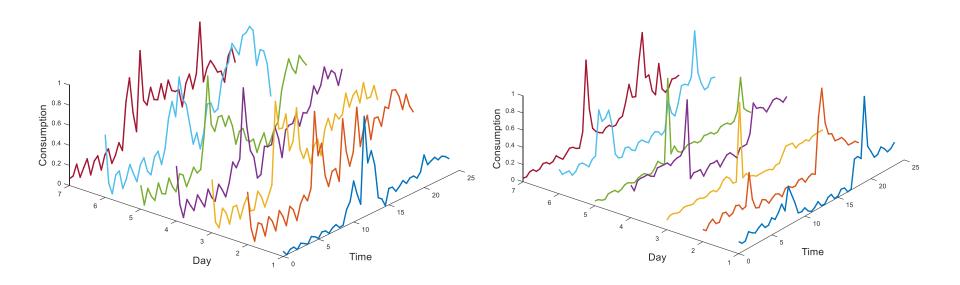
- Among these ten questions, the accuracies of #2 (chief income earner has retired or not), #4 (have children or not), and #8 (cooking facility type) are higher than 75%;
- The accuracies of #7 (number of bedrooms) and #9 (energy-efficient light bulb proportion) are lower than 60%;
- The accuracies of the remaining questions are between 60% and 75%.

Customer Behavior



Electricity Consumption Patterns

Characteristics of Individual Smart Meter Data



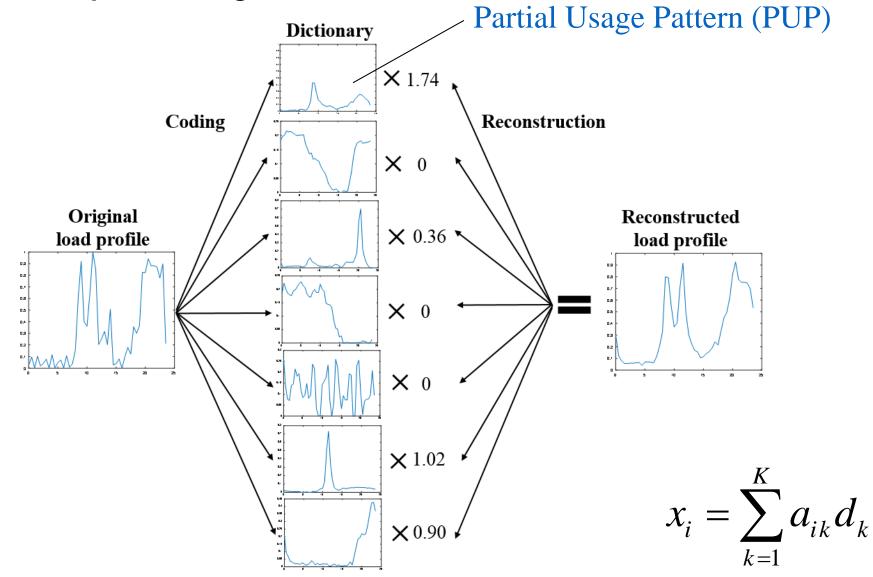
Sparsity: only a small fraction of the time has higher electricity consumption while the rest approximates to zero.

Diversity: load profiles are various with different customers and in different days, but it can be decomposed into different parts.

<u>Yi Wang</u>, Qixin Chen, Chongqing Kang, and Qing Xia, "Sparse and Redundant Representations-Based Smart Meter Data Compression and Pattern Extraction", *IEEE Trans. Power Systems*, 2017, 32(3): 2142-2151.

Electricity Consumption Patterns

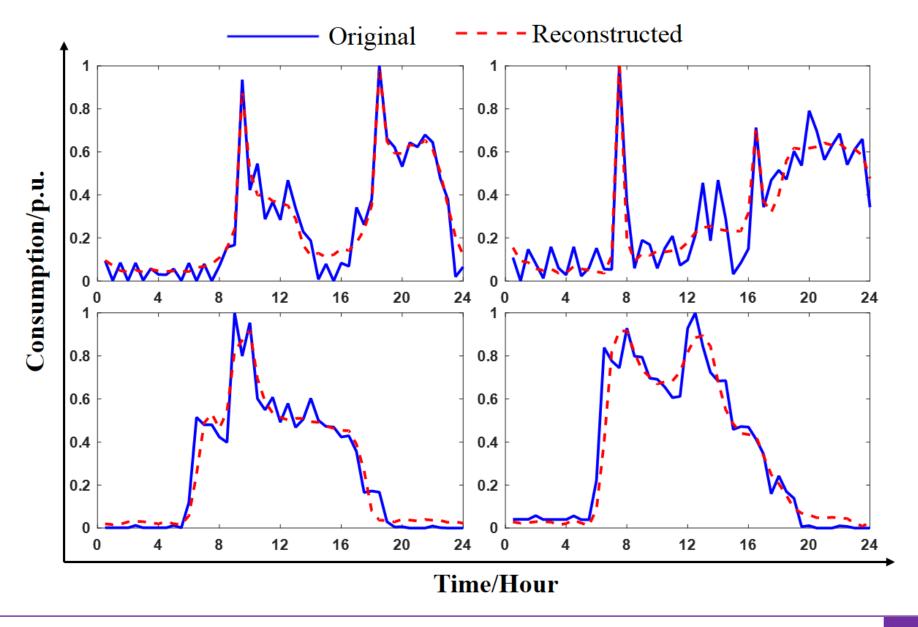
Idea of Sparse Coding

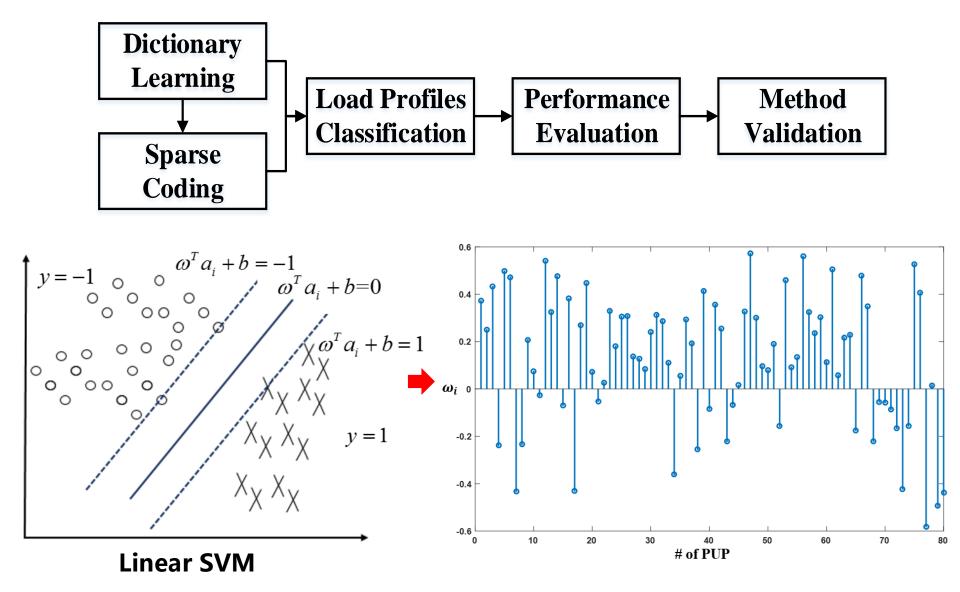


Non-Negative Sparse Coding

- $\begin{array}{ll} \min & \left\| \boldsymbol{X} \boldsymbol{D} \boldsymbol{A} \right\|_{F}^{2} & \longrightarrow & \text{Minimize the recovery error} \\ s.t. & \left\| a_{i} \right\|_{0} \leq s_{0}, & 1 \leq i \leq M & \text{Sparsity Constrains} \\ & a_{i,k} \geq 0, & 1 \leq i \leq M, 1 \leq k \leq K \\ & d_{k,n} \geq 0, & 1 \leq k \leq K, 1 \leq n \leq N \end{array}$
- Search a redundant dictionary *D* that captures the features or PUPs of load profiles as well as possible
- 2) Optimize the coefficient vector **A** of each load profile to guarantee its sparsity and an acceptable reconstruction error.

Electricity Consumption Patterns



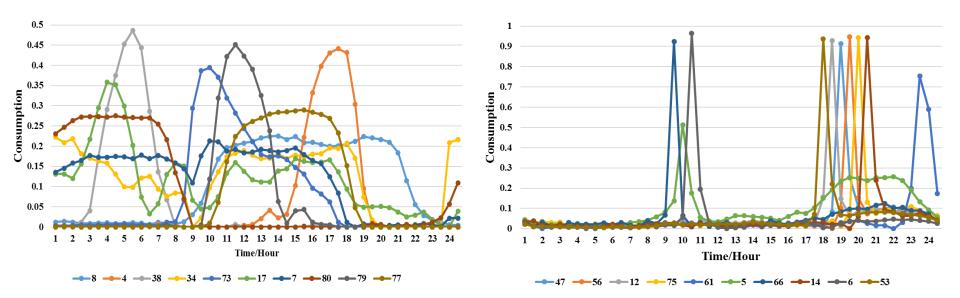


E)

◎清莱大学

◆ Ten most relevant PUPs for SMEs and residential customers

副清莱大



	Shape	Duration	Peak times
SME	Vaulted	Long	Dawn, working hours
Resident	Sharp peak	Short	Morning, night

$$RMSE = \sqrt{\frac{1}{K} \sum_{i=1}^{K} (x_i - \sum_{i=1}^{M} a_i d_i)^2}$$

$$MAE = \frac{1}{K} \sum_{i=1}^{K} \left| x_i - \sum_{i=1}^{M} a_i d_i \right|$$

Data Compression-Based

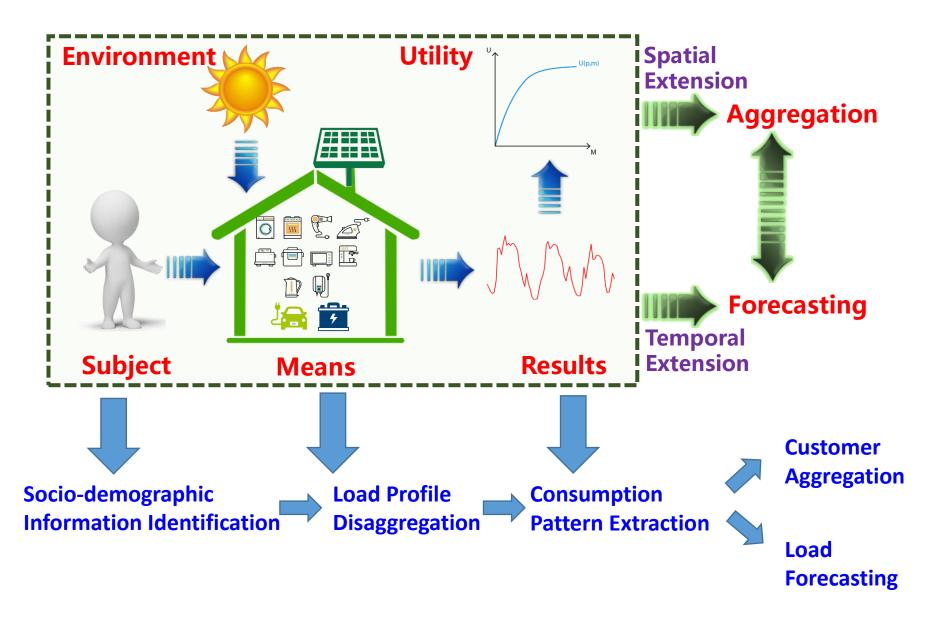
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

 $F1 = \frac{2 \times precision \times recall}{precision + recall}$ Classification-Based

Comparison with Different Techniques

	Parameter	RMSE	MAE	Accuracy	F1
K-SVD	5, 80	0.099	0.060	0.874	0.793
k-means	80	0.120	0.180	0.786	0.752
PCA	5	0.111	0.167	0.771	0.764
DWT	5	0.141	0.327	0.667	0.688
PAA	6	0.112	0.181	0.706	0.725
Original	48	/	/	0.735	0.724

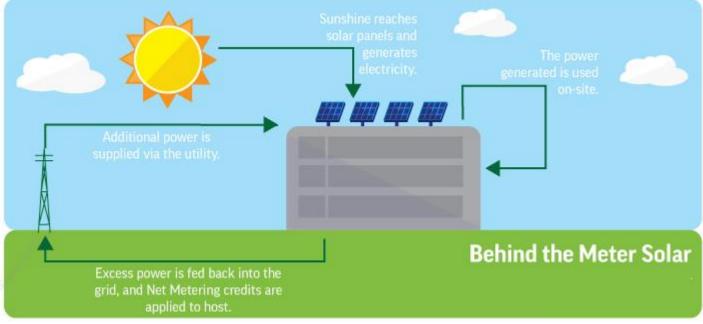
Customer Behavior



Problem Statement & Basic Idea

Behind-the-meter (BtM) PV are invisible to DSO which poses great challenges to real time situation awareness.

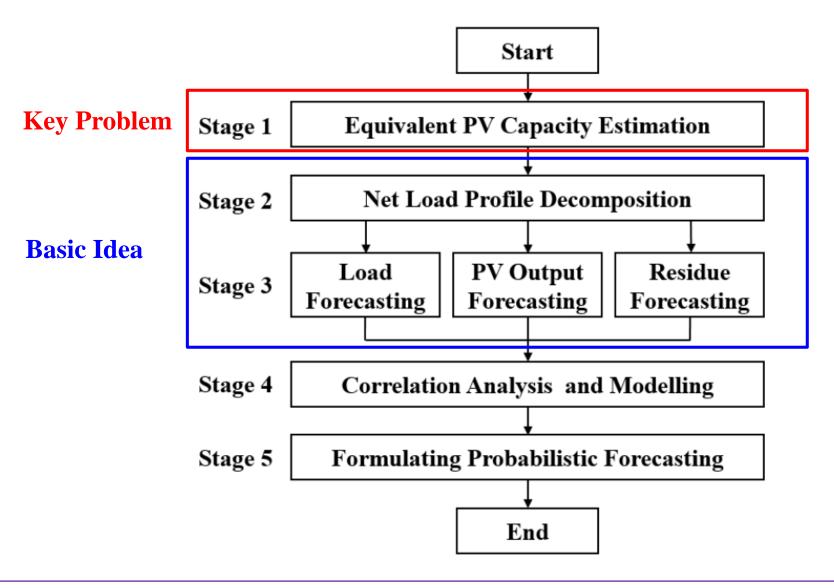
- ➤ How to estimate the capacity of BtM PV?
- How to further improve the forecasting accuracy?



<u>Yi Wang</u>, Qixin Chen, Chongqing Kang, and Qing Xia, "Sparse and Redundant Representations-Based Smart Meter Data Compression and Pattern Extraction", *IEEE Trans. Power Systems*, 2017, 32(3): 2142-2151.

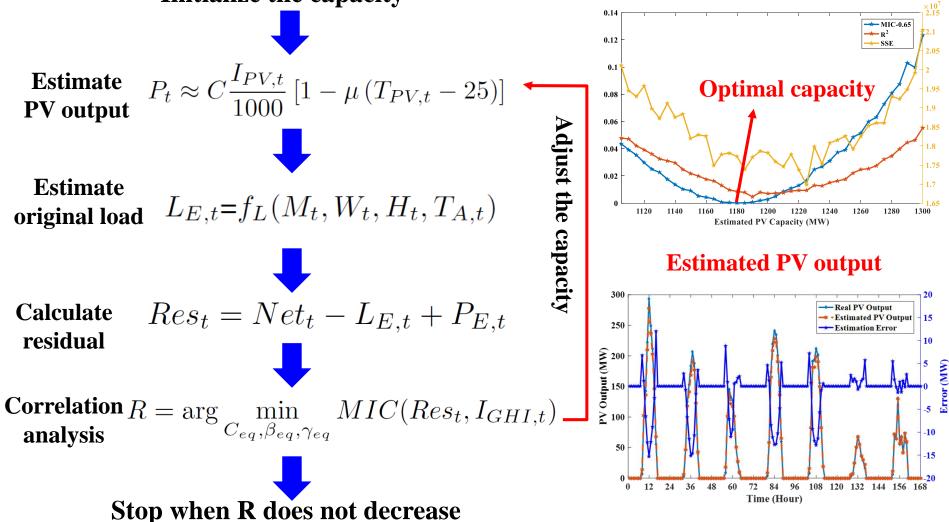
Behind-the-meter (BtM) PV

Framework



Behind-the-meter (BtM) PV

PV Capacity Estimation Initialize the capacity



)清莱大学

<u>Yi Wang</u>, Ning Zhang, Chongqing Kang, Miao Miao, Rui Shi, and Qing Xia, "An Efficient Approach to Power System Uncertainty Analysis with High-Dimensional Dependencies", *IEEE Trans. Power Systems*, 2018, 33(2): 2984-2994.

aboratory

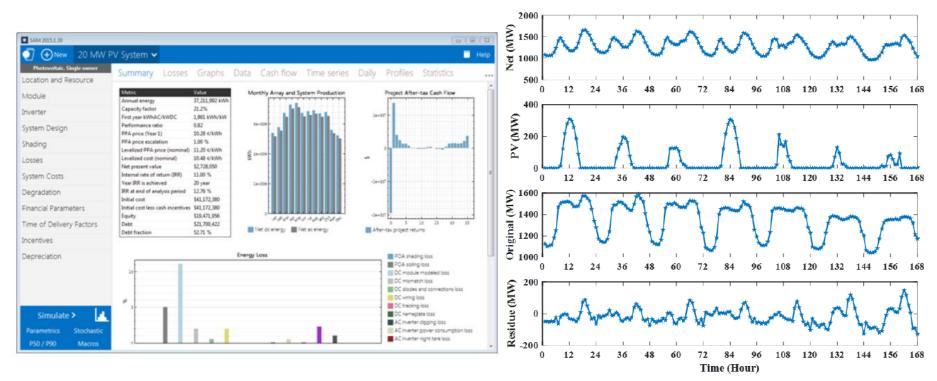
Behind-the-meter (BtM) PV

Data Simulation

System Advisor Model (SAM) Developed by NREL

Net load separation

◎浦苇大学



Results

lts		Point	Probabilistic
		Forecasting	Forecasting
	Time Series	#1	#4
Competing methods	Considering Temperature	#2	#5
	Considering Temperature	#3	#6
	and Solar Irradiation		
		I	I
1	PV Proposed	Method #1	Method #2 M

() 消華大学 Elt Energy Intelligence

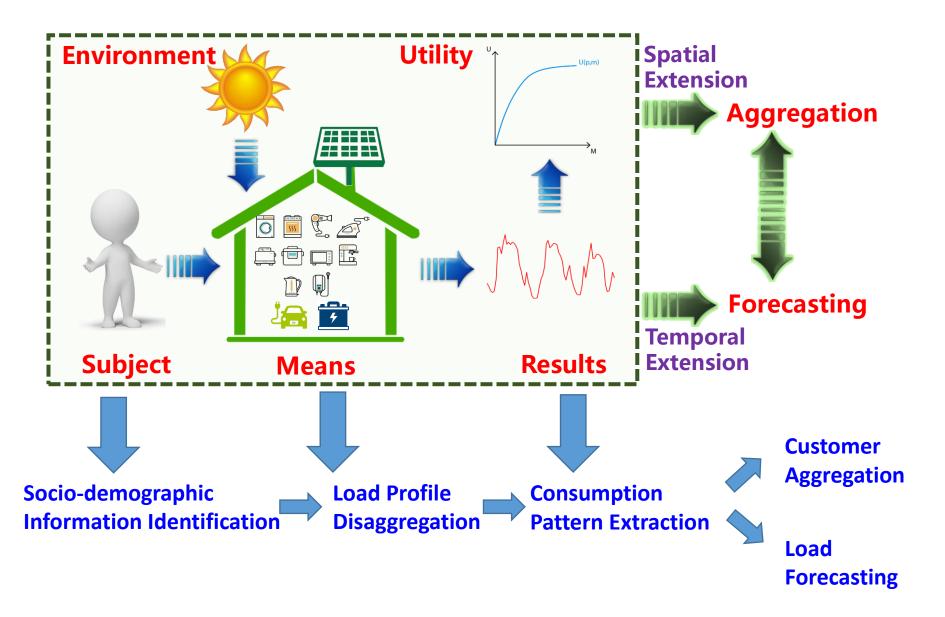
Daint fanagasting	PV	Proposed	Method #1	Method #2	Method #3
Point forecasting	Penetration	Method			
	0	34.3/2.60	38.3/2.85	40.7/3.06	34.2/2.59
	5%	60.1/3.37	94.6/5.28	101.5/5.47	61.4/3.59
	10%	80.9/4.80	145.8/8.17	157.5/8.50	83.6/5.23
The higher, the better !	15%	109.1/7.28	221.8/13.1	209.7/12.3	115.0/8.25
The inglier, the better :					
	20%	140.8/22.6	279.1/109.2	267.1/84.1	162.8/43.6

Drobabilistic forecasting	PV	Proposed	Method #4	Method #5	Method #6
Probabilistic forecasting	Penetration	Method			
	0	34.2	42.1	38.8	34.0
	5%	43.4	60.1	58.1	45.7
	10%	55.9	82.7	80.5	63.2
	15%	69.2	108.7	107.5	80.3
	20%	82.5	135.2	133.7	97.7

Laboratory 計能源实验室

Energy Intelligence

Customer Behavior

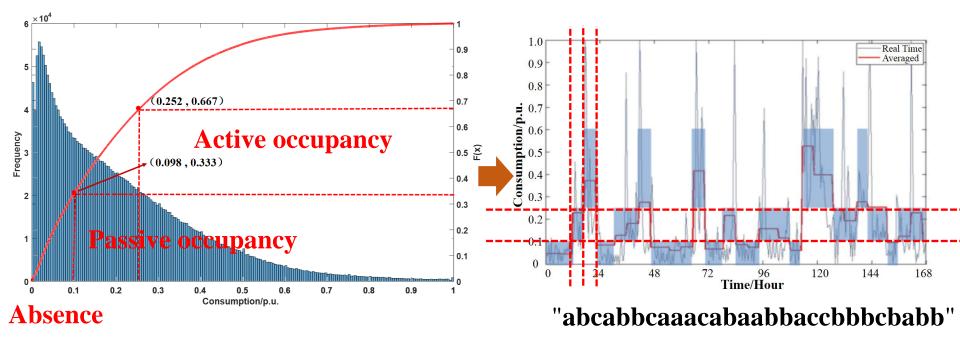


Customer Aggregation

The customers aggregated in the same cluster should share at least one similar characteristic.

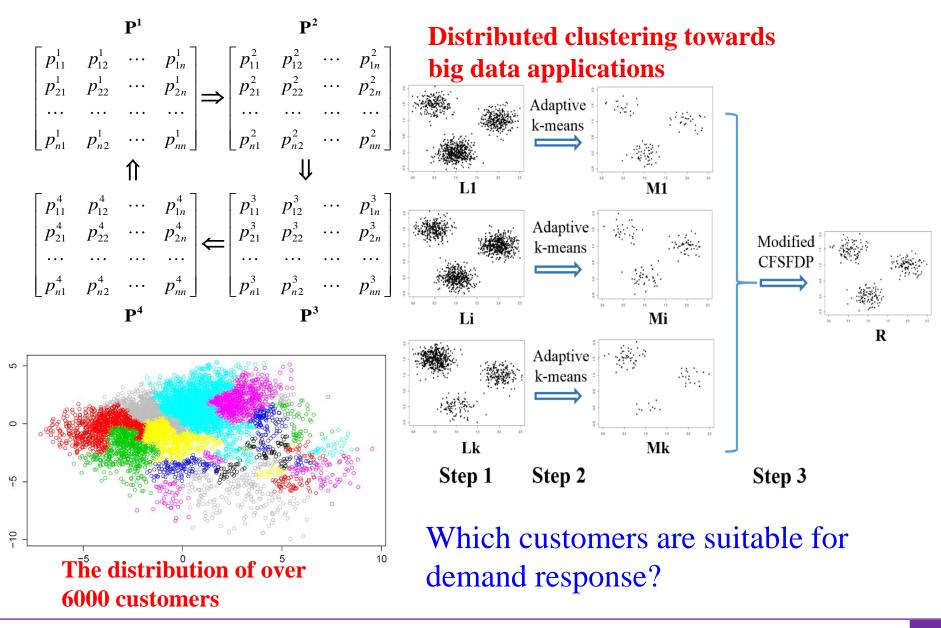
③清華大学

- Characteristic Extraction
- Clustering Algorithm



<u>**Yi Wang**</u>, Qixin Chen, Chongqing Kang, and Qing Xia, "Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications", *IEEE Trans. Smart Grid*, 2016, 7(5): 2437-2447.

Customer Aggregation

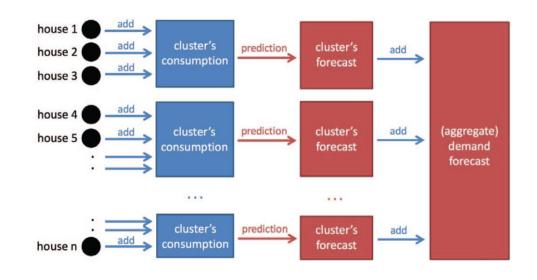


17 莱大学

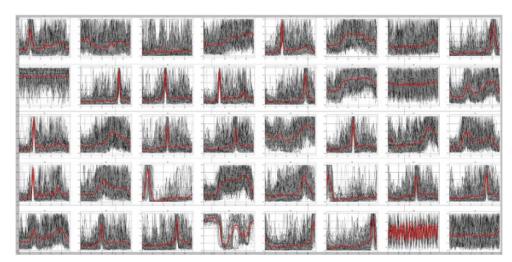
El

Aggregated Load Forecasting

With the prevalence of smart meters, fine-grained sub profiles reveal more information about the aggregated load and further help improve the forecasting accuracy.

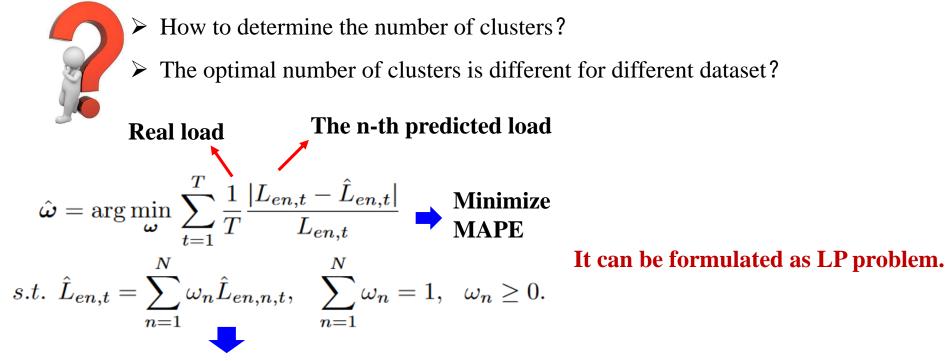


Is it possible to utilize both ensemble techniques and fine-grained subprofiles to further improve the forecasting accuracy?



<u>Yi Wang</u>, Qixin Chen, Mingyang Sun, and Chongqing Kang and Qing Xia, "An Ensemble Forecasting Method for the Aggregated Load with Subprofiles", *IEEE Trans. Smart Grid*, 2018, 9(4): 3906-3908.

Aggregated Load Forecasting

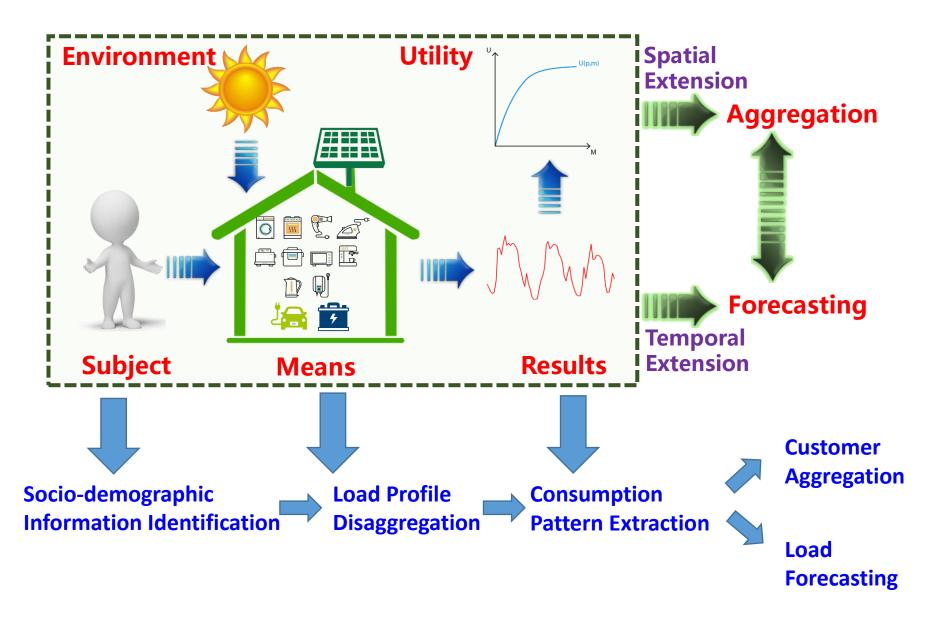


To determine the weights for the forecasts

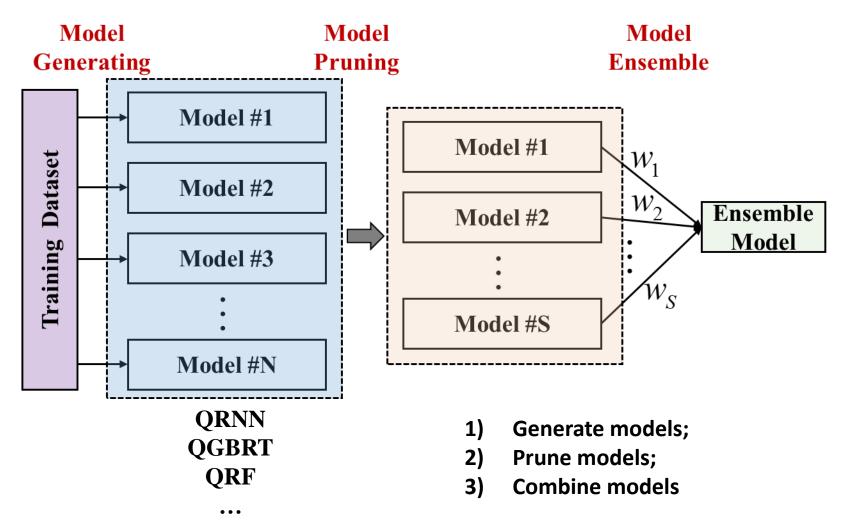
N	1	2	4	8	16	32	64	128	256	 5237	Ensemble
ω	0.634	0	0	0.271	0	0	0.095	0	0	 0	/
MAPE	4.25%	5.05%	5.29%	4.74%	5.55%	4.66%	4.79%	5.09%	5.59%	 10.31%	4.05%
RMSE	210.95	229.73	228.01	217.68	244.9	217.64	227.36	232.61	250.27	 441.33	202.88

Case studies on both residential load data and substation load data **demonstrate the superior performance of the proposed ensemble method** when comparing with the traditional direct or bottom-up forecasting strategies.

Customer Behavior



Ensemble Learning



<u>Yi Wang.</u> Ning Zhang, Yushi Tan, Tao Hong, Daniel Kirschen, and Chongqing Kang, "Combining Probabilistic Load Forecasts", *IEEE Trans. Smart Grid*, in press.

Probabilistic Load Forecasting () 清洋大学

From point forecast to probabilistic forecast

$$f_e(\mathbf{X}_{n,t}, \boldsymbol{\omega}) = \sum_{n=1}^N \omega_n f_n(\mathbf{X}_{n,t}, \mathbf{W}_n).$$

$$f_{e,q}(\mathbf{X}_{n,t}, \boldsymbol{\omega}_q) = \sum_{n=1}^N \omega_{n,q} f_{n,q}(\mathbf{X}_{n,t}, \mathbf{W}_{n,q}).$$

$$\hat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{arg\,min}} \quad \sum_{t \in T} L_{n,t} (\sum_{n=1}^{N} \omega_n f_n(\mathbf{X}_{n,t}, \mathbf{W}_n), y_t)$$

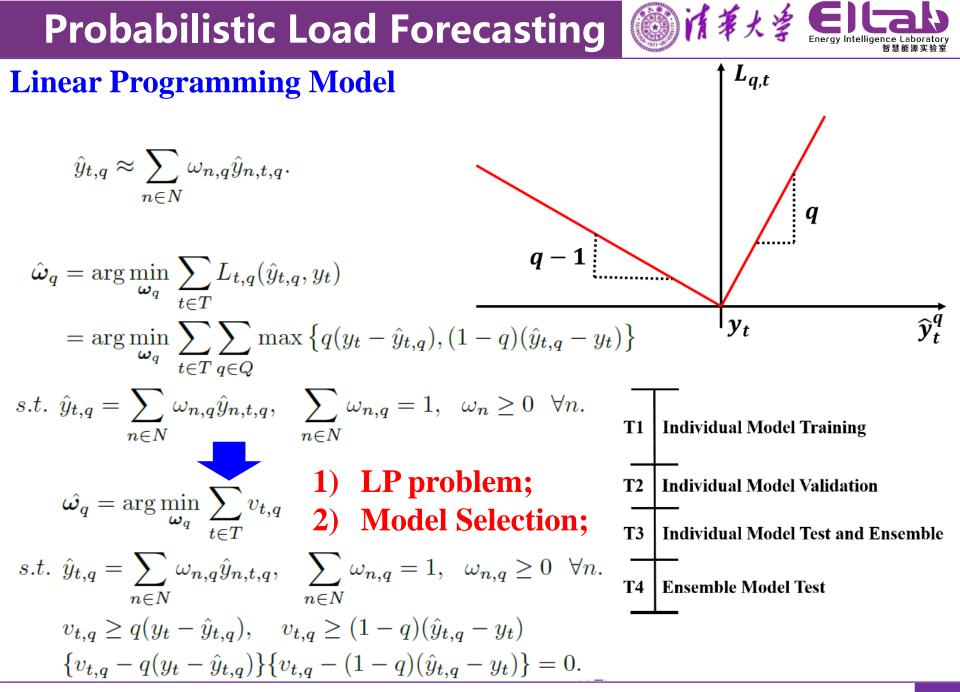
s.t.
$$\sum_{n=1}^{N} \omega_n = 1,$$
$$\omega_n \ge 0, \quad \forall n \in \{1, \cdots, N\}.$$

Point Forecasts

$$\hat{\boldsymbol{\omega}}_{q} = \underset{\boldsymbol{\omega}_{q}}{\operatorname{arg\,min}} \quad \sum_{t \in T} L_{n,t,q} \left(\sum_{n=1}^{N} \omega_{n,q} f_{n,q} (\mathbf{X}_{n,t}, \mathbf{W}_{n,q}), y_{t} \right)$$
s.t.
$$\sum_{n=1}^{N} \omega_{n,q} = 1,$$

$$\omega_{n,q} \ge 0, \quad \forall n \in \{1, \cdots, N\}.$$

Quantile Forecasts



Probabilistic Load Forecasting () (1年大学

Comparisons Nine models

1) Naïve Sorting (NS): With each forecasting model producing Q quantiles, a total of $N \times Q$ quantiles can be observed (in some sense) by N forecasting models. By sorting these observations by descending order, a new sequence $\mathbf{S}_t = \{S_{t,j}, j = [1, Q \times N]\}$ can be obtained. And therefore the q-th quantile is estimated as follows:

$$\hat{y}_{t,q} = S_{t,1+(q-1)N}$$

2) Median Value (MED): The median value of the N q-th quantiles is selected as the final quantile:

$$\hat{y}_{t,q} = S_{t,1+(q-1)N+[N/2]}.$$

3) Simple Averaging (SA): The simple averaging strategy applies equal weights to different methods:

$$w_{n,q} = 1/N.$$

Then, the final combined forecasts are calculated according to Eq. (15).

4) Weighted Averaging (WA): The basic idea of the weighted averaging method is that methods with higher accuracy should be given higher weights:

$$w_{n,q} = \frac{\frac{1}{L_{n,q}}}{\sum_{n \in N} \frac{1}{L_{n,q}}}.$$
 (

Constraints Quantiles	With Constraints	Without Constraints
Averaged Quantiles	5) QRA-E	8) CQRA-E
All Quantiles	6) QRA-A	9) CQRA-A
Targeted Quantiles	7) QRA-T	CQRA-T (Proposed)

Probabilistic Load Forecasting

Results

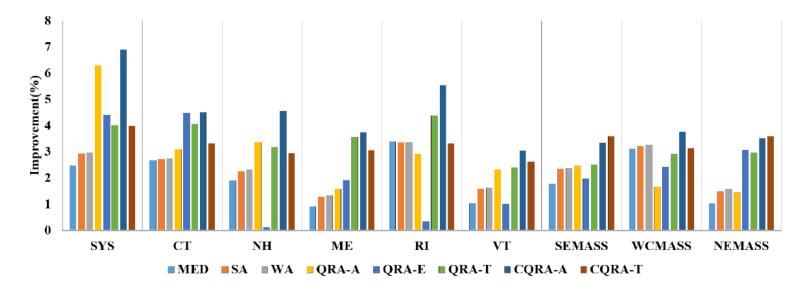
PINBALL LOSSES OF THE INDIVIDUAL AND COMBINATION METHODS FOR DIFFERENT ZONES

())消華大

Energy Intell

aboratory

Zones	SYS	СТ	NH	ME	RI	VT	SEMASS	WCMASS	NEMASS
BI	288.563	81.478	27.216	18.146	21.756	12.426	42.307	41.939	63.685
NS	327.569	95.058	31.586	19.003	25.738	13.247	48.817	47.041	71.873
MED	281.607	79.359	26.713	17.981	21.044	12.300	41.570	40.676	63.048
SA	280.375	79.322	26.618	17.916	21.053	12.233	41.336	40.638	62.752
WA	280.266	79.306	26.600	17.908	21.049	12.227	41.329	40.616	62.706
QRA-E	276.417	77.995	27.184	17.806	21.683	12.303	41.484	40.949	61.793
QRA-A	271.519	79.037	26.330	17.864	21.140	12.145	41.295	41.252	62.783
QRA-T	277.487	78.313	26.380	17.523	20.847	12.135	41.271	40.752	61.849
CQRA-E	356.527	100.925	33.829	22.767	26.540	15.616	51.765	51.544	79.131
CQRA-A	277.510	78.870	26.437	17.610	21.059	12.109	40.847	40.672	61.491
CQRA-T	269.953	77.961	26.034	17.492	20.619	12.061	40.941	40.422	61.524



Probabilistic Load Forecasting () 消耗大学 El

Results

Quantiles Models	10-th	20-th	30-th	40-th	50-th	60-th	70-th	80-th	90-th
#1	0	0	0	0.128	0.123	0	0.015	0	0.102
#2	0	0	0	0.177	0.022	0.236	0.154	0.004	0
#3	0.036	0	0	0.041	0.255	0	0.123	0.302	0
#4	0.385	0.444	0.281	0	0	0.030	0	0	0.068
#5	0.165	0	0	0.200	0.298	0.339	0.092	0	0.134
#6	0.037	0.093	0.537	0.264	0	0	0.000	0.251	0
#7	0	0.131	0	0.071	0	0	0.265	0.051	0.218
#8	0	0.207	0.152	0	0.158	0.003	0.350	0.133	0
#9	0.377	0.047	0.030	0.117	0.143	0.392	0	0.206	0.333
#10	0	0.078	0	0	0	0	0	0	0
#11	0	0	0	0	0	0	0	0.052	0.145
#12	0	0	0	0	0	0	0	0	0
#13	0	0	0	0	0	0	0	0	0

Zones Models	SYS	СТ	NH	ME	RI	VT	SEMASS	WCMAS S	NEMASS
#1	0.102	0.144	0.231	0.015	0.001	0.355	0	0	0.196
#2	0	0	0	0.082	0.074	0.146	0.071	0	0
#3	0	0	0.031	0	0	0.079	0	0.196	0
#4	0.068	0	0.089	0.349	0	0	0.038	0	0
#5	0.134	0	0	0	0.272	0	0.199	0.318	0.199
#6	0	0	0.283	0.231	0.226	0.096	0	0	0.136
#7	0.218	0	0.058	0.058	0	0.082	0.166	0.218	0.049
#8	0	0.129	0.308	0.079	0.197	0	0.173	0.076	0.087
#9	0.333	0.341	0	0.185	0.021	0.243	0.290	0.192	0.333
#10	0	0	0	0	0	0	0	0	0
#11	0.145	0.267	0	0	0	0	0	0	0
#12	0	0	0	0	0.210	0	0	0	0
#13	0	0.119	0	0	0	0	0.062	0	0

Energy Intelligence Laboratory

Summary

Smart Meter Data Analytics

Data Management

- 1. Smart Meter Data Compression Based on Load Feature Identification
- 2. A Combined Data-Driven Approach for Electricity Theft Detection

Pattern Extraction

- 3. Typical Electricity Consumption Pattern Identification for Massive Consumers
- 4. Sparse and Redundant Representation-Based Partial Usage Pattern Extraction

Socio-demographic Information

- 5. Deep Learning-Based Socio-demographic Information Identification
- 6. Cross-domain Feature Selection and Coding for Household Energy Behavior

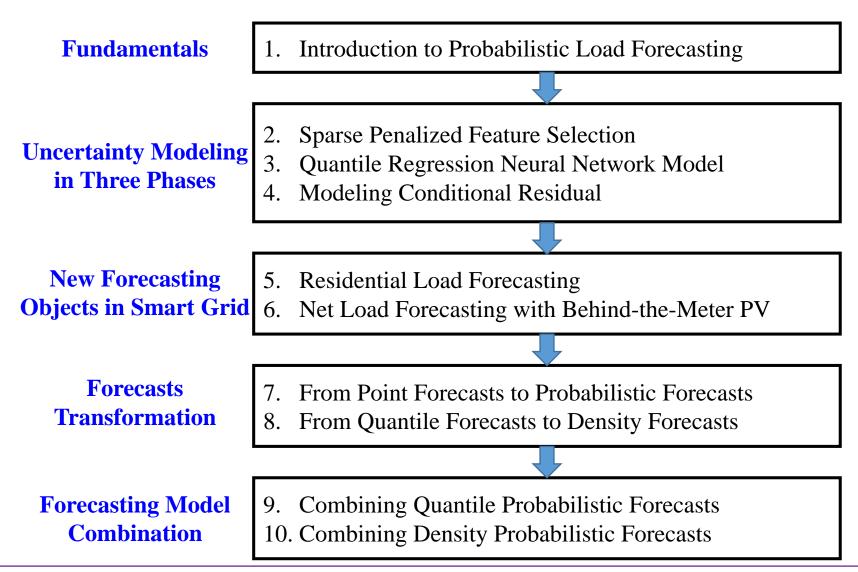
Customer Management

- 7. Clustering of Electricity Consumption Behavior Dynamics
- 8. Load Profiling Based Personalized Price Design

Load Forecasting

- 9. Short-term Probabilistic Residential Load Forecasting with Quantile LSTM
- 10. An Ensemble Forecasting Method for the Aggregated Load With Subprofiles

Probabilistic Load Forecasting



References

- 1. <u>Yi Wang</u>, Qixin Chen, Tao Hong, and Chongqing Kang, "Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges", *IEEE Trans. Smart Grid*, in press.
- 2. <u>Yi Wang</u>, Qixin Chen, Dahua Gan, Jingwei Yang, Daniel Kirschen, and Chongqing Kang, "Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data", *IEEE Trans. Smart Grid*, in press.
- 3. <u>Yi Wang</u>, Ning Zhang, Qixin Chen, Daniel Kirschen, Pan Li, and Qing Xia, "Data-Driven Probabilistic Net Load Forecasting with High Penetration of Behind-the-Meter PV", *IEEE Trans. Power Systems*, 2018, 33(2): 3255-3264.
- 4. <u>Yi Wang</u>, Ning Zhang, Chongqing Kang, Miao Miao, Rui Shi, and Qing Xia, "An Efficient Approach to Power System Uncertainty Analysis with High-Dimensional Dependencies", *IEEE Trans. Power Systems*, 2018, 33(2): 2984-2994.
- <u>Yi Wang</u>, Qixin Chen, Chongqing Kang, and Qing Xia, "Sparse and Redundant Representations-Based Smart Meter Data Compression and Pattern Extraction", *IEEE Trans. Power Systems*, 2017, 32(3): 2142-2151.
- 6. <u>Yi Wang</u>, Qixin Chen, Chongqing Kang, and Qing Xia, "Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications", *IEEE Trans. Smart Grid*, 2016, 7(5): 2437-2447.
- 7. <u>Yi Wang</u>, Qixin Chen, Mingyang Sun, and Chongqing Kang and Qing Xia, "An Ensemble Forecasting Method for the Aggregated Load with Subprofiles", *IEEE Trans. Smart Grid*, 2018, 9(4): 3906-3908.
- 8. <u>Yi Wang</u>, Dahua Gan, Ning Zhang, Zongxiang Lu, and Chongqing Kang, "Probabilistic Individual Load Forecasting Using Pinball Loss Guided LSTM", *Applied Energy*, in press.
- 9. <u>Yi Wang</u>, Qixin Chen, Ning Zhang, and Yishen Wang, "Conditional Residual Modeling for Probabilistic Load Forecasting", *IEEE Trans. Power Systems*, in press.
- 10. <u>Yi Wang</u>, Ning Zhang, Yushi Tan, Tao Hong, Daniel Kirschen, and Chongqing Kang, "Combining Probabilistic Load Forecasts", *IEEE Trans. Smart Grid*, in press.

Yi Wang Tsinghua University

2018-10-22