

Learning to Optimize for Urban Energy Systems

Yi Wang

yiwang@eee.hku.hk

Assistant Professor, EEE

The University of Hong Kong

June 2024

Appointment

2021.9-	Assistant Professor, The University of Hong Kong
2019.2-2021.8	Postdoc, ETH Zurich (Prof. Gabriela Hug)

Education

2014.9-2019.1 Ph.D., Tsinghua University (Prof. Chongqing Kang)
2017.3-2018.4 Visiting Student, University of Washington (Prof. Daniel Kirschen)
2010.9-2014.6 B.S., Huazhong University of Science and Technology

Research Interests

Data analytics for smart energy

- Cyber-physical power and energy systems
- Multi-energy systems integration

Energy Digitalization Laboratory at The University of Hong Kong (EDL@HKU) focuses on the digitalization of power and energy systems with an emphasis on the distribution and consumer side, including data analytics, data privacy, cyber-physical-social systems, Internet-of-things, etc. The overall goal is to make the distribution systems more adaptive to accommodate the high penetration of renewable energy toward a decarbonized future.

In addition to publishing research papers, we develop/provide:

- Software
- Hardware
- Technical reports
- Policy recommendations

Research Topics in EDL@HKU

- Topic 1: Urban Energy Systems
- Multi-energy systems
- Building energy systems
- Long-term Storage
- Topic 2: Demand Response
- Virtual power plants
- Electric vehicles
- Internet data center/5G base station
- Topic 3: Data Analytics in Energy Systems
- Energy Forecasting
- Privacy-preserving analytics
- Data valuation and pricing

Contents

01 Introduction

02 Learning to Model Predictive Control

03 Decision-Oriented Modeling in BES

04 End-to-End Forecasting in MES

05 Conclusions

o Urban Energy Systems

- Urban energy systems are multi-variant cyber-physical systems.
- The system complexity increases by higher integration of decentralized renewable energy generation, making the energy flow more complex.

$_{\odot}~$ The Role of Building Energy Systems

> High energy consumption amounts

About 34% of energy consumption in buildings is through electricity

High energy flexibility potential

About 10% of total energy consumption are flexible loads

Demand response availability in the Net Zero Scenario, 2020 and 2030

 $\circ~$ Flexible Resources in Building Energy Systems

o Control Framework for Flexibility Utilization

Most widely-used due to comprehensive performance

	Model Predictive Control (MPC)		Black-Box Control (usually reinforcement learning)		Rule-Based Control (RBC) (most buildings used in practice)
•	Robust	•	Easy to be implemented	•	Based on operator's expertise
•	Model-Based	•	Model-free		and knowledge
•	Computational Burden	•	High demand for collected data	•	Model-free

Required models

Thermal Model				Energy Model	
White-Box Models	Simulation software	•	Complicated Detailed	Detailed Modeling	Close to reality Less generalized
Grey-Box Models	Resistance–capacitance (RC)	• •	Robust Additional information required Not sufficiently accurate		
Black-Box Models	Traditional neural network	• •	More accurate Less robust Demand for a rich dataset	Generalized Modeling • (Energy Hub model) •	More generalized Omit HVAC details

Multi-energy Systems (MES)

- The integration of the generation, transmission, storage and consumption of electricity, heat, cooling and gas and other energy subsystems.
- > Overall energy efficiency can be enhanced, and cross-sector flexibility can be explored within MES.

• Data Barrier in Multi-energy Systems

- > Power, gas, and heat/cooling load data are probably owned by different system operators separately.
- These data owners tend to prioritize their own economic benefits over social benefits when making decisions.
- \succ Only by reasonably valuing the data, will they be willing to share their data set .

$\circ~$ Learning and Optimization

 Learning and optimization are typical and powerful tools that are widely adopted in urban energy systems.

0	Topology identification, capacity evaluation, optimal power flow	Renewables Multi	+ t y storage energy work Electric vehicle	0	Bilevel energy trading, flexibility region aggregation
	Consumption behavior modeling, solar energy forecasting	Buildings	Charge station	0	Peer-to-peer trading, net-zero building, storage arbitrage
0	Load forecasting, thermal dynamics modeling, system identification	 Urban area Burban area Prover plant Electricity User behaviour Genergy Gi Solar energy Solar energy Solar energy Densy storagi Solar energy Densy storagi Big data 			Demand response, model predictive control, multi-energy optimization

Typical research with Learning

Urban energy systems

Typical research with Optimization

o Insights Between Learning and Optimization

Decision-focused Learning for optimization

The goal of learning is not to minimize the error from statistical perspectives (RMSE, MAPE), but to minimize the decision-making costs in real world.

• Challenges From Traditional View

Focus on two challenges

[1] Boyu He, Ning Zhang, Chen Fang, Yun Su, and Yi Wang, "Flexible Building Energy Management with Neural ODEs-Based Model Predictive Control," IEEE Transactions on Smart Grid, in press.

[2] Xueyuan Cui, Jean-Francois Toubeau, Francois Vallee, and Yi Wang, "Decision-Oriented Modeling of Thermal Dynamics within Buildings," IEEE Transactions on Smart Grid, in press.

[3] Yangze Zhou, Qingsong Wen, Jie Song, Xueyuan Cui, and Yi Wang, "Load Data Valuation in Multi-Energy Systems: An End-to-End Approach," IEEE Transactions on Smart Grid, in press.

02 Learning to Model Predictive Control

03 Decision-Oriented Modeling in BES

04 End-to-End Forecasting in MES

05 Conclusion

Contents

17

• Research Purpose

- 1. Balance reliability and accuracy with limited training data for building thermodynamics modeling
- 2. Reliably control buildings while simultaneously utilizing both the **thermal capacity** and the **flexibility resources of the energy system**.

We propose a system with...

The most reliable and commonly used control framework	 Utilize the reliability of the RC model and the accuracy of the black-box model establish a continuous digital twin between the building and the model 	A generalized energy framework
	Ē	
мрс 🕂	Neural ODEs (Neural Ordinary Differential Equations)	+ Energy Hub
Control Framework	Building Energy Model	

$\circ~$ Neural ODEs-Based Thermal Model

Building thermal dynamics can be represented as:

$$\frac{\mathrm{d}\mathbf{h}(t)}{\mathrm{d}t} = f(\mathbf{h}(t), t) \tag{1}$$

Substituting f with a neural network

$$\frac{\mathrm{d}\mathbf{h}(t)}{\mathrm{d}t} = f(\mathbf{h}(t), t, \theta)$$
(2)

Solving it with numerical integration methods (Euler method)

$$\mathbf{h}_{t+1} = \mathbf{h}_t + f(\mathbf{h}_t, t, \boldsymbol{\theta}) \cdot \Delta t$$
 (3)

Symbols the building states (zone temperature)

 $\theta \rightarrow$ neural network parameters

 $\mathbf{h}(t)$

 $f(\cdot) \rightarrow$ states derivative. Can be replaced by a neural network

• Neural ODEs-Based Thermal Model

- ✓ By modeling the "differential dynamic" of the building, Neural ODEs has less demand on data and is more robust on performance than a traditional black-box model. Specifically, If the number of the hidden layers reduce to 0, Neural ODEs degenerates into a RC model (state-space representation).
- ✓ By introducing neural networks, Neural ODEs is more accurate than a RC model.

• MPC Formulation

Minimize the total building energy cost

Constraints:

Objective Function

- Energy Hub structure constraint
 Energy Hub embedded in
- $\checkmark\,$ Thermal balance constraint
- ✓ Battery constraint
- ✓ Energy flow direction constraint
- ✓ Equipment capacity constraint

✓ Building state constraint <</p>

Neural ODEs embedded in

Methods to Handle Nonlinear Neural Network (a > 0)

$$a = \operatorname{ReLU}(z)$$

$$\textcircled{a} = \max(0, z) \quad \Leftrightarrow \quad \begin{cases} u \ge 0 \\ a \ge z \\ a \le M(1 - u_1) \\ a \le z + M(1 - u_2) \\ u_1 + u_2 \ge 1 \\ u_1 \in \{0, 1\} \\ u_2 \in \{0, 1\} \end{cases}$$

The whole nonlinear optimization is transformed into an MILP!

\circ Setting

Basic	Simulation Period Solver Simulation Software	January 1st to February 1st Gurobi 9.5.1 EnergyPlus
ပ္ပ	MPC default timestep	30 min
Σ	MPC prediction horizon	12 h
D	Area	2294 m ²
ildin	Height	6.1 m
Bu	Zone	5 zones, with Zone #5 uncondition
e	Gas	remain constant
Pric	Electricity	time-of-use signal (off-peak, mid

o Network Structure

Network Structure Comparison

Name	Structure	RMSE 0.5 h	after a C 3 h	Certain Ti 12 h	ime Leng 1 day	gth (°C) 3 days		- Predic	t Temperatur
Training Set							22		RC Mode
Network 1	$13\!\!\times\!\!5$	0.2534	0.6396	0.6467	0.6373	0.6853	23-		
Network 2	$13 \times 15 \times 5$	0.1794	0.3840	0.4888	0.5197	0.4920	ပ် 22 -		
Network 3	$13 \times 15 \times 15 \times 5$	0.1588	0.1901	0.2176	0.2566	0.2899	° 21 -		
Network 4	$13 \times 15 \times 15 \times 15 \times 5$	0.1288	0.1576	0.2003	0.2060	0.2555	nre		
Validation Set							- ⁰²		
Network 1	13×5	0.2648	0.5615	0.7420	0.6893	0.7497	ษั 19 - น	\checkmark	
Network 2	$13 \times 15 \times 5$	0.1705	0.4749	0.6724	0.6461	0.6961	Ъ 18-		
Network 3	$13 \times 15 \times 15 \times 5$	0.1918	0.3010	0.4325	0.4757	0.4930	1 10		
Network 4	$13 \times 15 \times 15 \times 15 \times 5$	0.3392	0.7515	0.6267	0.6656	0.7337	17 -	0	1
								•	

Network 1 is a RC model

Network 2 is our selected model

✓ Neural ODEs is more accurate than a RC model

✓ Complexed network (Network4) may face **overfitting** problem

Model prediction result comparison

MPC Prediction

> The high accuracy between predicted and actual values verifies that the trained model can be incorporated into MPC for state prediction.

Demand Response

• Thermal Comfort Performance

Temperature distribution of Zone #2 in January

- Set 4 different temperature setpoints as Cases 1-4
- Temperature falls within the dual setpoints: 92.31%
- Deviations of less than 0.5 °C: 7.62%
- Deviations between 0.5 and 1 °C: 0.07%

Calculation Time Performance

MPC calculation time and MILP gap of unsolved samples

Average calculation time

29 s

• System Comparison

Compared System Information

	System 1	System 2	System 3	System 4
Thermal Model	1	×	1	×
HVAC Control	Instruction	PID	Instruction	PID
Control Framework	MPC	MPC	MPC	None
Energy Component	Whole	Whole	No battery and CHP	No battery and CHP
Feasibility	~	×	1	~

normal building + Energy Hub (not practical in reality)

normal building + thermal model

normal building

- 250 System 1 System 2 System 3 System 4 ✓ Through **building thermal mass utilization**, System 3 achieves 8% cost reduction
- ✓ By implementing the proposed Energy Hub, System 2 achieves 26% cost reduction
- \checkmark Our proposed method gets a total **34%** cost reduction

02 Learning to Model Predictive Control

03 Decision-Oriented Modeling in BES

04 End-to-End Forecasting in MES

05 Conclusion

Contents

Problem Statement

29

• Decision-oriented modeling framework

$$egin{aligned} \mathcal{M}:\ \dot{ au} &= a\cdot au + b\cdot q + F(oldsymbol{x})\ F(oldsymbol{x}) &= \Psi(oldsymbol{x};oldsymbol{ heta}) \end{aligned}$$

Inear relationship for decision variables; Black-box (NN) representation for complex disturbances.

3. Backward: training strategy

Gradient update

• Forward: Optimization-oriented loss function

Gradient derivation (obj. w.r.t. model parameters)

B. Amos, et al, "Optnet: Differentiable optimization as a layer in neural networks," in International Conference on Machine Learning. PMLR, 2017, pp. 136–145.

• Forward: Physics-informed auxiliary loss function

- Only minimizing the obj. will deviate from real physical characteristics (accuracy);
- The deviation is hard to correct in a "unsupervised" way (without ground-true model).

O Backward: Coordinated gradient descent

The given two gradient vectors could be contradictory

 $\langle \boldsymbol{g}^{\mathrm{phy}}, \boldsymbol{g}^{\mathrm{opt}} \rangle = (\boldsymbol{g}^{\mathrm{phy}})^{\mathrm{T}} \cdot \boldsymbol{g}^{\mathrm{opt}} < 0$

Determine a coordinated gradient vector g that minimizes the conflict degree between the given two gradients

 $\max_{\boldsymbol{g}} \min \left\{ \langle \boldsymbol{g}^{phy}, \boldsymbol{g} \rangle, \langle \boldsymbol{g}^{opt}, \boldsymbol{g} \rangle \right\}$ s.t. $\|\boldsymbol{g} - \boldsymbol{g}^{phy}\| \leq r \|\boldsymbol{g}^{phy}\|$

The objective is to minimize the conflict degree (i.e., maximize inner product) by finding the new vector **g**.

• Find the optimal training epoch by selecting the optimal obj. within the preset error threshold.

$$\min_{k} \left\{ \mathcal{C}_{k}^{\text{opt}} \left| \text{s.t.} \left| \frac{\mathcal{L}_{k}^{\text{phy}} - \mathcal{L}_{0}^{\text{phy}}}{\mathcal{L}_{0}^{\text{phy}}} \right| \le \epsilon, (\mathcal{L}_{k}^{\text{phy}}, \mathcal{C}_{k}^{\text{opt}}) \in \mathbb{P} \right\} \right\}$$

Simulation setup

- \circ Data preparation
- Building prototypes: 6-zone, 10-zone, 18-zone
- Simulation software: Energyplus
- Training period (01/06-31/07) and test period (01/08-31/08)
- Parameter setting

Evaluation of operation costs

\circ Procedure

Quantify the actual ex-post operation performance of the model

• Cost comparison

$$Sum = Power + Tem$$

$$\lim_{t \to T} C^{opt} = \sum_{t \in T} c_t p(t) + c^U e^U(t) + c^L e^L(t)$$
MTO: modeling-then-optimization

Buildings	Costs		Training			Test	
Dunungs	Costs	MTO	Proposed	vs MTO	MTO	Proposed	vs MTO
	Power	316.97	314.57	-0.76%	156.70	155.88	-0.52%
6-zone	Tem	26.35	11.99	-54.50%	24.51	14.89	-39.25%
	Sum	343.32	$\overline{326.56}$	- <u>-4.</u> 88% -	181.21	170.77	-5.76%
	Power	911.13	893.06	-1.98%	481.80	473.97	-1.63%
10-zone	Tem	51.07	47.93	-6.15%	25.11	26.21	4.38%
	Sum	962.20	- <u>940</u> .99 -	- <u>-2.</u> 20% -	506.91	500.18	-1.33%
18-zone	Power	2960.45	2917.53	-1.45%	1448.79	1441.24	-0.52%
	Tem	63.62	52.15	-18.03%	28.31	30.26	6.89%
	Sum	3024.07	⁻ 2969.68 ⁻	<u>-</u> 1.80% -	1477.10	1471.50	-0.38%

- The costs are mainly reduced in the term corresponding to temperature violations:
 - The temperature violation is affected by all factors, while the power consumption is mainly caused by the cooling power factor;
 - During the training process, the temperature violation part has thus a larger improvement space.

• Statistical accuracy

• Statistical metrics

Buildings	Dataset	RMSE			MAE			R2		
Bundings	Dataset	MTO	Proposed	vs MTO	MTO	Proposed	vs MTO	MTO	Proposed	vs MTO
6 7000	Train	0.2022	0.2045	1.14%	0.1542	0.1561	1.23%	0.9841	0.9837	-0.04%
o-zone	Test	0.2710	0.2765	2.03%	0.1892	0.2026	7.08%	0.9729	0.9718	-0.11%
10 2000	Train	0.3867	0.3928	1.58%	0.3151	0.2945	-6.54%	0.8734	0.8694	-0.46%
10-20110	Test	0.4294	0.4533	5.57%	0.3195	0.3252	1.78%	0.8219	0.8015	-2.48%
18-zone	Train	0.2990	0.3059	2.31%	0.2241	0.2309	3.03%	0.8828	0.8773	-0.62%
	Test	0.3322	0.3326	0.12%	0.2665	0.2667	0.08%	0.8293	0.8290	-0.04%

• Details in temperature curves

- The MTO purely pursues minimizing MSE losses;
- The proposed method sacrifices some accuracy in pursuit of the operation cost minimization.

- The "conservative" nature of the temperature data generated by the proposed method;
- Compared with MTO, the data are generally lower in the peak period and higher in the valley period;
- This conservativeness tends to reduce temperature violations part in decision costs.

Daily temperature variation of the 6-zone building

02 Learning to Model Predictive Control

03 Decision-Oriented Modeling in BES

04 End-to-End Forecasting in MES

05 Conclusion

Contents

 X_n : Input feature of sector n w_n : Model parameters of sector n $M_n(X_n, w_n)|_{n \in N}$: Load forecasts of sector n $\min_{x} C(z, M_n(X_n, w_n)|_{n \in \mathcal{N}})$

where C and z are the cost and decision variables for the scheduling of MES.

- FTO: w_n and z are **determined sequentially**.
- Cross-sector data/information has not been shared and fully utilized to reduce operation costs.
- The forecasting and decision-making processes are treated separately so that data cannot directly serve final decision-making in MES.

min $C(z, M_n(X_n, w_n)|_{n \in \mathcal{N}})$ $z; w_n \mid_{n \in \mathcal{N}}$

 C_N : The operation costs If all sectors cooperate with the MES operator, which means the sectors **share their** data X_n with the operator indirectly.

End-to-End approach: w_n and z are **optimized as a whole**.

To encourage sectors to participate in the end-to-end model, the value of the data owned by various sectors should be quantified:

1) How many additional profits V(N) can be derived from data sharing of various sectors in MES?

2) How to make a fair plan $\{v_1, v_2, \dots, v_N\}$ to allocate the profits V(N) to each sector ?

End-to-End Optimization

• How to optimize w_n and z as a whole?

An intuitive idea to train the end-to-end model is forward and backward propagation, as used for traditional neural network training.

End-to-End Optimization

dC dz

 $\overline{dz} \, \overline{dM}$

dC

How to obtain the gradient cost C over load forecasts M?

The MES optimization problem can be abstracted:

min C(z, M)

s.t. $f(z, M) \le 0, h(z, M) = 0$

The Lagrange function of the optimization problem

 $\mathcal{L}(z,\lambda,\mu,M) = \mathcal{C}(z,M) + \lambda^T f(z,M) + \mu^T h(z,M)$

The KKT condition of $\mathcal{L}(z, \lambda, \mu, M)$:

$$\begin{cases} f(z, M) \leq 0\\ h(z, M) = 0\\ \lambda_i \geq 0, i \in \{1, 2, \cdots, q\}\\ \lambda_i f_i(z, M) = 0, i \in \{1, 2, \cdots, q\}\\ \nabla_z \mathcal{L}(z, \lambda, \mu, M) = 0 \end{cases}$$

Chain principle

Implicit function:

$$G(\tilde{z}, M) = \begin{bmatrix} \nabla_z \mathcal{L}(z, \lambda, \mu, M) \\ \lambda f(z, M) \\ h(z, M) \end{bmatrix}$$

The gradient of \tilde{z} over *M* can be obtained by the differential principle of implicit function:

$$\frac{d\tilde{z}}{dM} = G_{\tilde{z}}^{-1}(\tilde{z}, M)G_M(\tilde{z}, M)$$

where

$$\frac{d\tilde{z}}{dM} = \begin{bmatrix} \frac{dz}{dM} & \frac{d\lambda}{dM} & \frac{d\mu}{dM} \end{bmatrix}^T$$

End-to-End Optimization

- However, OptNet is designed for LP/QP problem, if What if there are integer variables in the optimization problem?
 - Two-stage end-to-end model solution method: MES optimization problem Decision making Module $C^*(M_n(X_n, w_n)|_{n \in \mathcal{N}})$ Original MILP $C^* = +\infty$ $z \ge \lceil z_{LP} \rceil$ $\leq \lfloor z_{LP(P_0)} \rfloor$ **2** 3. Backward MES 2. Solve MES MES optimization problem stage Optimization problem Optimization problem lirst (P_3) $M_1(X_1, w_1)$ $M_2(X_2, w_2) \quad M_{\mathcal{N}}(X_{\mathcal{N}}, w_2)$ $z \leq \lfloor z_{LP} \rfloor$ (P_5) ✓ 1. Forward 4. Backward forecasting model forecasting model $\mathbf{A} X_2$ \mathbf{A}_1 stage Optimal sub-problem P^* Dataset 2 Dataset Dataset .A econd Load forecasting Module OptNet for $LP(P^*)$ $g_{opt} = dC^*(M)/dM$
- OptNet-embedded branch and bound method: How about incorporating OptNet into the branch and bound search process (Construct OptNet for each yellow node)? Higher computational complexity and storage requirements

Data Valuation Framework

o Additional Profit Quantification

The reduced operation costs can be regarded as the additional profits derived from the data sharing.

$$V(N) = C_{\emptyset} - C_N$$

End-to-End data valuation:

1) Each sector $n \in N$ utilizes its own data to develop the basic forecasting model M_n .

2) Computing operation costs of the traditional FTO approach C_{ϕ} .

3) Integrating the forecasting model with the MES optimization problem for end-to-end model training.

4) Forward-propagating the end-to-end model to calculates the operation costs C_N .

Basic model development:

```
for each sector n \in \mathcal{N} do

Random initialize parameters w_n|_{n \in \mathcal{N}}

for k \in [0, E_1] do

M_n = M_n(X_n; w_n^{(k)})

g_n = \text{Backward}(L_{MSE}(M_n, M_n^{\text{real}}))

w_n^{(k+1)} = w_n^{(k)} - lr \cdot g_n
```

Return $M_n|_{n \in \mathcal{N}}$

```
End-to-End data valuation:

C_{\varnothing} \text{ Calculation:}
C_{\varnothing} = \min_{z} C(z, M_{n}(X_{n}, w_{n})|_{n \in \mathcal{N}})
```

End-to-End modeling:

```
for k \in [0, E_2] do

M = M_n(X_n, w_n)|_{n \in \mathcal{N}}
P^* = \text{Optimal sub-problem of } P(z, M)
Construct OptNet for <math>LP(P^*)
for sector n \in \mathcal{N} do

\begin{bmatrix} g_{\text{opt},n} = \text{Backward}(\text{OptNet}) \\ g_n = \text{Backward}(g_{\text{opt},n}) \\ w_n^{(k+1)} = w_n^{(k)} - lr \cdot g_n \end{bmatrix}
C_{\mathcal{N}} \text{ Calculation:}
\begin{bmatrix} C_{\mathcal{N}} = \min_{z} C(z, M_n(X_n, w_n)|_{n \in \mathcal{N}}) \\ \text{Additioanl profits quantification:} \\ V(\mathcal{N}) = C_{\mathcal{N}} - C_{\varnothing} \end{bmatrix}
Return V(\mathcal{N})
```

Additional Profit Allocation

Zero-Shapley value:

Shapley value has been widely adopted to measure the members' contributions to the collaboration earning. $v_n = \frac{1}{|N|} \sum_{S \subseteq N \setminus \{n\}} \frac{1}{\binom{|N| - 1}{|S|}} [V(S \cup \{n\}) - V(S)]^+$

V(S): the value of the cooperation formed by union S $[\cdot]^+ = \max\{0, \cdot\}$

Two remaining question:

When some sectors within the MES do not participate in the end-to-end modeling, how to measure V(S)?

Shapley value may be negative

The zero-Shapley value does not satisfy the budget balance property:

$$\Gamma(v_n) = \frac{v_n}{\sum_{i \in N} v_i} (V(N) - V(\emptyset))$$

Data Valuation Framework

• Additional Profit Allocation

When only sectors in U participate in the cooperation, how to measure V(U)?

- 9 End-to-End data valuation: C_{\emptyset} Calculation: 10 $C_{\varnothing} = \min_{z} C(z, M_n(X_n, w_n)|_{n \in \mathcal{N}})$ 11 End-to-End modeling: 12 for $k \in [0, E_2]$ do 13 $M = M_n(X_n, w_n)|_{n \in \mathcal{N}}$ 14 $P^* = \text{Optimal sub-problem of } P(z, M)$ 15 <u>Construct OptNet for $LP(P^*)$ </u> 16 for sector $n \in \mathcal{N}$ do 17 $g_{\text{opt},n} = \text{Backward}(\text{OptNet})$ 18 $\begin{array}{l} g_n = \operatorname{Backward}(g_{\operatorname{opt},n}) \\ w_n^{(k+1)} = w_n^{(k)} - lr \cdot g_n \end{array}$ 19 20 $C_{\mathcal{N}}$ Calculation: 21 $C_{\mathcal{N}} = \min_{z} C(z, M_n(X_n, w_n)|_{n \in \mathcal{N}})$ 22 Additioanl profits quantification: 23 $V(\mathcal{N}) = C_{\mathcal{N}} - C_{\emptyset}$ 24 Return $V(\mathcal{N})$ 25
- C_U denotes the operation costs of the "partially integrated" endto-end model.
- Only sector $n \in U$ will update their model.

 $\min_{z,w_n|_{n\in N}} C_n(z, M_n(X_n, w_n)\Big|_{n\in N})$

 $\min_{z,w_n|_{n\in U}} C_n(z, M_n(X_n, w_n) \Big|_{n\in U}, M_n(X_n, w_n) \Big|_{n\in N\setminus U})$

Sectors in N\U will remain their model parameters unchanged (denoted as w_n) and only submit final forecasts M_n(X_n, w̄_n)|_{n∈N\U} to the operator.

• Experiment result

• Forecasting performance & convergence properties

	Model	MAE	RMSE	MAPE
Electricity sector	Benchmark	82.592	113.102	3.565
	End-to-End	82.383	112.951	3.562
	Accuracy Variation	0.25%	0.13%	0.00%
Heat sector	Benchmark	120.967	178.530	9.074
	End-to-End	121.331	181.348	9.216
	Accuracy Variation	-0.30%	-1.58%	-0.14 %
Cooling sector	Benchmark	487.406	626.781	12.895
	End-to-End	477.677	615.956	12.799
	Accuracy Variation	2.00%	1.73%	0.10%

LOAD FORECASTING PERFORMANCE OF THREE SECTORS IN MES

Compared to FTO, The end-to-end approach has little effect on the forecasting accuracy.

The proposed method possesses favorable convergence properties.

Deal: 31012.06 kCNY FTO: 31418.71 kCNY (101.31% ideal cost) End-to-End: 31294.04 kCNY (100.91% ideal cost)

47

Case Study

Experiment result Ο

Operation cost ۲

Daily operation costs for 12 months in 2017 (kCNY)

	FTO	End-to-End	Ideal	Improvement
Jan.	88.517	88.115	86.808	0.454 %
Feb.	87.500	87.064	85.730	0.498 %
Mar.	86.687	86.294	85.174	0.453 %
Apr.	88.015	87.579	86.170	0.495 %
May	88.282	87.873	86.338	0.463 %
Jun.	92.834	92.442	91.786	0.423 %
Jul.	95.141	94.821	94.402	0.336 %
Aug.	93.729	93.373	92.961	0.379 %
Sep.	92.823	92.477	92.375	0.373 %
Oct.	87.576	87.301	87.197	0.314 %
Nov.	86.505	86.231	85.681	0.316 %
Dec.	85.328	85.140	84.527	0.220 %

o Experiment result

- Electricity sector makes little contribution.
- Accuracy of the electricity sector is relatively high.
- The deviation of the electricity price in intra-day and day-ahead is relatively small.
- Heat sector cooperates with the MES operator can markedly improve additional profits.

02 Learning to Model Predictive Control

03 Decision-Oriented Modeling in BES

04 End-to-End Forecasting in MES

05 Conclusion

Contents

Conclusions

- We proposes new insights into exploring deeper integration learning with optimization in urban energy systems:
 - Propose Neural ODEs-based model structure in model predictive control for building energy management. The proposed learning-based method balances robust and accurate requirements in thermal dynamics modeling. Adaptive MPC mechanism is adopted to improve energy dispatch efficiency, supported by continuous modeling characteristics.
 - Proposes decision-oriented modeling method of building thermal dynamics. The proposed method achieves lower operation costs than the traditional accuracy-oriented modeling methods; the proposed model has properly learned to avoid decision spaces leading to expensive costs.
 - Presents an end-to-end framework designed to quantify data value by integrating forecasting and decision processes.
 A profit allocation strategy based on contribution to cost savings is investigated, encouraging data sharing in MES.

Thanks for your attention