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Research Group: EDL@QHKU

o Energy Digitalization Laboratory at The University of Hong Kong (EDL@HKU) focuses on the
digitalization of power and energy systems with an emphasis on the distribution and
consumer side, including data analytics, data privacy, cyber-physical-social systems,
Internet-of-things, etc. The overall goal is to make the distribution systems more adaptive to
accommodate the high penetration of renewable energy toward a decarbonized future.

In addition to publishing research papers, we develop/provide:
= Software

= Hardware

= Technical reports

* Policy recommendations



Research Topics in EDLOHKU

o Topic 1: Urban Energy Systems
* Multi-energy systems
« Building energy systems

* Long-term Storage

o Topic 2: Demand Response
 Virtual power plants
 Electric vehicles

* Internet data center/5G base station

o Topic 3: Data Analytics in Energy Systems
» Energy Forecasting
» Privacy-preserving analytics

« Data valuation and pricing
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Introduction

o Urban Energy Systems

o Urban energy systems are multi-variant cyber-physical systems.

o The system complexity increases by higher integration of decentralized renewable energy generation,
making the energy flow more complex.

@) eectricity @) user behaviouré"
6 Wind energy @ Energy storage
@ Solar energy @ Transmission lines . N . ) > ’}: - @
@ Energy grid G Big data & @ @

Natl Sci Rev, Volume 8, Issue 3, March 2021, nwaal34, https://doi.org/10.1093/nsr/nwaal34 6



Introduction

o The Role of Building Energy Systems

> High energy consumption amounts > High energy flexibility potential

Buildings consume more than 30% of
global final energy

About 34% of energy consumption in About 10% of total energy

buildings is through electricity

consumption are flexible loads

Residential EJ 150 560 :ﬁ 21%
Other - 21 %
o l 480 Buildings 18%
Non-residential 120 - e - [ Industr3 z
A _— — 1
| iia 90 400 Transport 15% &
‘ Buildings ® Hydrogen production 3
construction s _ 2
Transport J industry - concrete, 60 g O Other : 2% &
26% - -« 34% aluminium and steel = - 2
- 49 30 2 20 o
N\ Materials such as £
bricks and glass 0 160 6% 3
i - ~1 % '\Q f\c‘.) ,\Q (\9 (1’/\ a
eEeg S S . .
Other:c:]::tlpu%:g: M Biomass M Coal M oil Natural gas ]
industry (traditional) 0 o | - 0o
- 3% Electricity M Heat Renewables

Demand response availability in the Net Zero
Scenario, 2020 and 2030

Energy consumption in buildings by fuel,
2010-2021

Global share of buildings and construction final
energy demand, 2021



Introduction

o Flexible Resources in Building Energy Systems

Building Passive Thermal ___ 1 HVACsetpoint | HVACOutput
Mass management Control
Building Flexibility V V
_Building Ener.gy | — Energy _System _ —, Energy System
Equipment Coordination Design Control

CHPs, batteries, PV
panels, chillers, etc.

A M MY A A~
’T‘ . ‘T'

price signal  HVAC output  zone temperature price signal battery gas boiler

For example,




Introduction

o Control Framework for Flexibility Utilization

Most widely-used due to comprehensive performance

—

wedictive Control (MPC)

Black-Box Control
(usually reinforcement learning)

Rule-Based Control (RBC)

(most buildings used in practice)

« Robust
*  Model-Based

* Computational Burden

« Easy to be implemented
* Model-free

« High demand for collected data

« Based on operator’s expertise

and knowledge

 Model-free

Required models

Thermal Model

Energy Model

White-Box Models

Grey-Box Models

Black-Box Models

Simulation software

« Complicated
* Detailed

. Robust

Resistance—capacitance (RC) ¢  Additional information required

Traditional neural network

* Not sufficiently accurate

More accurate
Less robust
Demand for a rich dataset

Detailed Modeling

Generalized Modeling
(Energy Hub model)

Close to reality
Less generalized

More generalized
Omit HVAC details




Introduction

o Multi-energy Systems (MES)

» The integration of the generation, transmission, storage and consumption of electricity, heat, cooling and

gas and other energy subsystems.

» Overall energy efficiency can be enhanced, and cross-sector flexibility can be explored within MES.

== Power flow

,_M-“V fpy  — Heing fow

= Cooling flow

Solar Power

n‘ lllil l/ = l 5
“r\—_—} = 4

iolver grid / Buildings /
ikl

CCHP
Hydropower station . _'LLL?. Al Lﬁ
Wind Power _ﬁ!t!hb thb

Battery 523

Residence

Hesing Stanon Cooling Station
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Introduction

o Data Barrier in Multi-energy Systems
» Power, gas, and heat/cooling load data are probably owned by different system operators separately.

» These data owners tend to prioritize their own economic benefits over social benefits when making
decisions.

» Only by reasonably valuing the data, will they be willing to share their data set .

Power
generation

r

Boiler

Mining/
Manufacturmg

_________________________________________________________ =l 11



Introduction

o Learning and Optimization

o Learning and optimization are typical and powerful tools that are widely adopted in urban energy
systems.

o Bilevel energy trading, flexibility
region aggregation...

o Topology identification, capacity
evaluation, optimal power flow...

Battery storage

‘ Electric vekicle

Multi-energy
network

o Peer-to-peer trading, net-zero

|
|
| |
: |
: |
: |
: |
: |
: |
: |
: |
|
o Consumption behavior modeling, | :
| building, storage arbitrage... :
|
| |
: |
: |
: |
: |
: |
: |
: |
: |
: |
: |

|
|
|
|
|
|
|
|
|
|
|
|
|
solar energy forecasting... :
|
|
|
|
|
|
|
|
|
|
|
|

_ _ Demand response, model
o Load forecasting, thermal dynamics ° - g :
modeling, system identification predictive control, - multi-energy
’ optimization...
_________________________ e e e e e e e e e ——————
Typical research with Urban energy systems Typical research with

Learning Optimization

12



Introduction

o Insights Between Learning and Optimization

® | earning boundaries for optimization

A

® [ earning constraints for optimization

Learning Optimization [
- Traditional view
obj : I (X, Vy) [ Data accuracy]
\\'//H\\//N
N OO\ S.1.
W g W a5 Il = %
Nl SN @A X =
INa/iNa /7 I
XX y=y=sy —
'\ga/"\ \1 ax + by DfeCISIOI’l New insights
= performance

|

® Decision-focused Learning for optimization

The goal of learning is not to minimize the error from statistical perspectives (RMSE, MAPE),
but to minimize the decision-making costs in real world. 13



Introduction

o Challenges From Traditional View

: Predicted N
Input Learning parameters Optimization Output

. obj 1 J(x,y)
Traditional view [Dataaccuracy] A ST, .
Z or R<X<X Xy

- A A y<y<y

ax+by=¢ -
ax+by=¢

1 e — \ I

i F d :
First challenge: orward pass Second challenge

! \
Hard to evaluate input data value | mmmm—) Backward pass ,  Lead to suboptimal decisions

o due to learning errors
Input/Output of optimization g

_______________________________

: Predicted T
Input Learning SRS Optimization Output
o Decision =
New insights ecisio . ol _10X.y)
performance X st
Z or R<X<X Xy
. . - L | A A - ysys<y |
® Decision-focused Learning ax +by = §x+by—é

14



Introduction

o Research Work Focus on two challenges

Decision errors minimization Data valuation
Building energy systems Building energy systems Multi-energy systems
Power . [
I ) (= I S Lo Electricity
Perrld: " Ei ‘:":’in ,,,,,c_"'”'-”': & . HVAC Puw’o_rl‘ . 5‘5' A L G?s i E]T.T:“y
£ Transtormer E | }—>] Etectrical Load e, e TR | | G 5131;0"
' ET EI B ' i e [ Electric  Cooling Cooli
Gmrm: e ] ¥ Chiller : T — & o CCHP ( refrigerator  storage Ioadms
L h "'w_z_!‘., E'”‘iia"":“ cor, I_E S Gooling Load Controllable wariable -rﬁlnﬂ‘.\wumpgrmm? _l | | t
I ‘ ed. | | E— L | L Heat
|'Esz Gas Boller ¥ fp | Heating Loau L [ Gas Electric Heat e
I m I = boiler boiler storage
INPUT | ENERGY HUB |0U'IPUT {
Traditional learning to optimize s> Decision-focused —b Decision-focused
constraint learning boundary condition learning
Neural ODEs-Based Model Predictive Decision-oriented modeling of building Data Valuation in Multi-Energy Systems:
Control for Building Energy Management [1] thermal dynamics [2] An End-to-End Approach [3]

[1] Boyu He, Ning Zhang, Chen Fang, Yun Su, and Yi Wang, “Flexible Building Energy Management with Neural ODEs-Based Model Predictive Control,” IEEE

Transactions on Smart Grid, in press.
[2] Xueyuan Cui, Jean-Francois Toubeau, Francois Vallee, and Yi Wang, “Decision-Oriented Modeling of Thermal Dynamics within Buildings,” IEEE Transactions

on Smart Grid, in press.
[3] Yangze Zhou, Qingsong Wen, Jie Song, Xueyuan Cui, and Yi Wang, “Load Data Valuation in Multi-Energy Systems: An End-to-End Approach,” IEEE

Transactions on Smart Grid, in press. 15
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Problem Statement

o Research Purpose

1. Balance reliability and accuracy with limited training data for building thermodynamics modeling

2. Reliably control buildings while simultaneously utilizing both the thermal capacity and the flexibility
resources of the energy system.

We propose a system with...

The most reliable | |1. Utilize the reliability of the RC model and the _

and commonly used accuracy of the black-box model A generalized

control framework 2. establish a continuous digital twin between the energy framework
building and the model

A A A

MPC + Neural ODEs (Neural Ordinary Differential Equations) -l- Energy Hub
A o o

Control Framework Building Thermal Model Building Energy Model .



Methodology

o Neural ODEs-Based Thermal Model

Building thermal dynamics can be represented as:

;o dh(t) _
. f(h(t),t) (1)

A Substituting f with a neural network

: dn(t) _ f(h(t),t,0) (2)
H dt

B Solving it with numerical integration methods
(Euler method)

h,,=h +f(h,to)-At (3

-

h(t) — the building states (zone temperature)

Symbols

@ — neural network parameters

\f() —» states derivative. Can be replaced by a neural netwcw

Neural ODEs
process
lagram

Backward

—— Forward
Predict h(7)

——————————————————————

_______________

________________________
______________________

dh(z)| o fromm
dt

f(h(to )s ly 9) =

________________

18



Methodology

o Neural ODEs-Based Thermal Model

The recursion formula of the system is

h,.,=h, +[f (ht,lt)]-At

Building States (h,)

(e.g., zone temperature)

Network Input ( I,)
(e.g., outdoor temperature, solar radiation,
S outdoor humidity, zone heating rate)

f is the neural ODEs network with the following structure:

\»ﬁ\leuraIODEs Structure \

X%

NOZh AN,
N %H%"»f“\\
Gt Talel e
\' Oi‘,\ ‘/ \' 01‘) ‘/ \
XD (XD

P //

K hidden layers /

Activation function: ReLU
WHM |va ion function: Re

Derivative of building
states dh;/dt

v" By modeling the “differential dynamic” of the building, Neural ODEs has less demand on data and is
more robust on performance than a traditional black-box model. Specifically, If the number of the
hidden layers reduce to 0, Neural ODEs degenerates into a RC model (state-space representation).

v By introducing neural networks, Neural ODEs is more accurate than a RC model.

19



Methodology

o Energy Hub modeling

Power Grid
qu nr
I—'-Eﬂm}[ Transformer }
Nge
Gas Grid | . [ .
E, Ngn

Ny
INPUT |

[ Photovoltaic } Battery 1

n bat_ch

El Npat_dis E
BV bat_charge

Eeb_in

[ Electric Boiler}
neb

COP, L
Esres >

ECHPh I
Eeb_out

Energy Hub diagram

Cowe |

Electrical Load

I Cooling Load

L

h

Egb_in [ Gas Boiler }E@i*ﬁl Heating Load

ENERGY HUB | OUTPUT

Source

« power
- gas

Load

 electrical load
« cooling load
* heating load

Equipment

« CHP

» gas boiler

» electric boiler
* battery

- PV

» chiller

20



Methodology

o MPC Formulation

Objective Function Minimize the total building energy cost

Constraints:

¢ Vv Building state constraint 4-{ Neural ODEs embedded in}

v Energy Hub structure constraint
[ Energy Hub embedded in } Methods to Handle Nonlinear Neural Network

v' Thermal balance constraint a = ReLU(2) (a2 0

az=z
v’ Battery constraint 0 a<M({A-u,)

L . a=max(0,z) & (2sz+M(1-uy)

v Energy flow direction constraint wy +u, = 1
v' Equipment capacity constraint uy €40,13

(U2 € {0,1}

L 4

The whole nonlinear optimization is transformed into an MILP!

21



Case Study

. Zone #1
o Seftting P S
Zone #2
Simulation Period January 1st to February 1st
&)
'% Solver Gurohi 9.5.1
oM . : Zone #3 Zone #5 Zone #4
Simulation Software EnergyPlus oo
O | MPC default timestep 30 min Zone
o
= | MPC prediction horizon 12 h one #2 N
3
= | Area 2294 m*
C
'T__J Height 6.1 m Zone #3 Zone #4
= Zone #5
m § Zone 5 zones, with Zone #5 unconditioned

DOE prototype commercial

building: stand-alone retail
I Gas remain constant building

Price

Electricity time-of-use signal (off-peak, mid-peak, on-peak)

22



Case Study

o Network Structure

Network Structure Comparison Model prediction result comparison

RMSE after a Certain Time Length (°C)

Name Structure 05 h 3h 12h 1day 3 days Predict Temperature Actual Temperature
Training Set ’s RC Model /23 Neural ODEs Model \
Network 1 13x5 0.2534 0.6396 0.6467 0.6373 0.6853
| Network 2 13x15%5 0.1794 0.3840 0.4888 0.5197 0.4920 | O 221 O 221
Network 3 13x15x1ox5  0.1588 0.1901 0.2176 0.2566 0.2899 ~ 5] Y
Network 4  13x15x156x15x5 0.1288 0.1576 0.2003 0.2060 0.2555 g g
= 20 = 20
Validation Set g g
Network 1 13%5 0.2648 0.5615 0.7420 0.6893 0.7497 e 197 e 191
| Network 2 13x15%5 0.1705 0.4749 0.6724 0.6461 0.6961 | 2 18- 2 184
Network 3 13x15x15%x5  0.1918 0.3010 0.4325 0.4757 0.4930
Network 4  13x15x15x15x5 0.3392 0.7515 0.6267 0.6656 0.7337 17 0 ] 5 3 17 0 ] 5 3
Time (day) \ Time (day) /

Network 1 is a RC model
(] Network 2 is our selected model

v Neural ODEs is more accurate than a RC model

v' Complexed network (Network4) may face overfitting problem

23



Case Study

o Energy Flow o MPC Prediction
CHP || Off-Peak Predicted Value Temperature Upper Bound
GES Heating Load ] Mid-Peak Actual Value Temperature Lower Bound
Building || On-Peak O  Prediction Start Time Battery SOC Bound
20 Zone #2 Temperature
Gas Boner ot B o
ectric boiler ;25_
- Electricity Out Internal Heating %
Electricity In o
Electricity y g_ 20- W
(0]
[
I Transformer Battery Electrlcal Load 151 : : :
Battery SOC
| | 100
L 75
Maximum Photov otalc O 501
m Chlller @)
= »n 257
. Coollng Load 1] 0 ! . . . i ]
Used Photovotaie ! Jan.16 Jan.17 Jan.18 Jan.19 Jan.20 Jan.21
Total energy flow in the Energy Hub / Date
R4 MPC prediction of the temperature of Zone #2 and the
P battery SOC versus actual data
-
<=

» The high accuracy between predicted and actual values verifies that the trained

model can be incorporated into MPC for state prediction.
24



Case Study

o Demand Response

A A VN
YT_"’ <F 4-

price signal battery discharge  battery charge

POy

price signal purchased gas purchased electricity

11 | Off-Peak Average Purchased Electricity Per Period
|| Mid-Peak Average Purchased Gas Per Period

| | On-Peak I Average Purchased Electricity Per Hour
L] Average Purchased Gas Per Hour

N
(@)

1N
o

w
o

N
(@)

Battery Average SOC (%)

—_—
o
1

201 [ | Off-Peak
| ] Mid-Peak [ Battery Average Charge Per Hour

Battery Average SOC Per Hour

Battery Average Charging Power (kW)

Bulding Average Purchased Energy (kW)

30 —OnPesk PETE AEIage Shae Fermenes O T 334567 8910 1m1'6 17 18 19 2'0-;%2 23 24
Average battery SOC and charging rate in different Time (h)
time periods Average purchased building energy in different time
periods

25



Case Study

o Thermal Comfort Performance

22 A

Temperature (° C)

N
(o)}
1

Temperature

Proportion of Each Case

N
o
1

N
oo
1

60 -

Proportion (%)

N
o
1

F N
o
1

Case 1

Case 2 Case 3 Case 4

Temperature Setpoint

0.5 Degree Out of Setpoint

1 Degree Out of Setpoint

Case 1 Case2 Case 3 Case4

@@ No Deviation
[ 0~0.5 Degree Deviation
I 0.5~1 Degree Deviation

Temperature distribution of Zone #2 in January

Set 4 different temperature setpoints as Cases 1-4
Temperature falls within the dual setpoints: 92.31%
Deviations of less than 0.5 °C: 7.62%
Deviations between 0.5 and 1 °C: 0.07%

o Calculation Time Performance
MPC Calculation Time (s)

0 10 20 30 40 50 60
Mean: 29.00s
86.2%
\‘ Mean: 3.7%
13.8%

10° 10
MILP Gap (%)

"1

] MPC Using Time Distribution (All Samples)

S Solved in 60s

[ MILP Gap Distribution (Samples Not Solved in 60s) || Not Solved in 60s

MPC calculation time and MILP gap of unsolved samples

» Average calculation time

29 s

26



Case Study

o System Comparison
Compared System Information

B Electricity Cost [ | Gas Cost

wso{ ___-B%_f__781§1_
System 1 | | System 2 |System 3 | | System 4 26% 1671.86 0y
1500 -34% e é
Thermal Model v X v X @
. : 1250 A 1334.24 3
HVAC Control Instruction PID [nstruction PID s 119‘(; o 0
Control Framework | MPC MPC MPC None » 2 10001 é
No battery| |No battery g Q_«—Jr
Energy Component Whole Whole and CHP and CHP B 7501 g
Feasibility v X v v 500 §
=3
_ 250 1 =
normal building + Energy Hub + thermal model @
(our proposed method) 0l
o System 1 System 2 System 3 System 4
normal building + Energy Hub v’ Through building thermal mass utilization, System 3
(not practical in reality) achieves 8% cost reduction
normal building + thermal model v’ By implementing the proposed Energy Hub, System 2

achieves 26% cost reduction

normal building v Our proposed method gets a total 34% cost reduction 27
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Problem Statement

o Thermal dynamics modeling for optimization

HVAC Solar
power radiation
X‘ - out _rad _occ
?,—[T'L:q“T 3qz' 3q@' ] ___________________
Influence Indoor Outdoor Occupant
features temperature temperature

T . out _rad _occ
N | is i T g g
/ ongnalwayin v |
& T — T & & optlmlzgtlon . |
. J _ Solar radiation .

= S | Opt . . |

Outdoor ‘s\~ = . '_ﬁé_] .’a’d ! 1min C (‘U € V, M(.Xf“ w)) |

temperature ""s\ AT o kS ’," | A |

~ - I - . ~ 2 I

= ¢ AT / | s.t. @ €argmin||7; — 7|5+ —

, —

———)> AN I ya T T T T T T T T T T T T T T T T T T T e At amy hacad lanrm =

Controllable variable AR |i: Indoor temperature y g"" E Data aCCUTaCy-baSGd |earﬂlng
L : ] Decision-focused way v
Uncontrollable variable I Co Tt
):[ - /1 Internal =, |
eatsource ! : opt . .
/ | min  C(v; M(X i39)))

____________________________________________________

7 = M(X ;%)

Model definition:
Ordinary Differential Equation-based

Model
parameters

b o o o e e e e = e = = - - - ——

Decision variable

veV,

Boundary parameter

4_-_-_-_-_-_-

e o o = = = - - ——

Decision performance-based learning

29



Methodology

o Decision-oriented modeling framework

P o e e e e e e e e e e e e e e

M: 7=a-74+b-q+ F(x)

State variable Control variable  Disturbance variables

T q X :[Z_out’*qrad’qocc]

F(x) = U(x;0)

a b
1. Backbone model structure é
Gt_) 7 4 * zlinear relationship for decision variables;

7 = M(X4;9) ’ i
ar +bq _,®4__ F(x) Black-box (NN) representation for complex
7 disturbances.
— Thermal Dynamics Model M:7=ar+bqg+ F(x)
Forward with ¢ ,
model parameters Optimization problem i Backward W'th
—— i updated gradients
2 Forward: Data accuracy Cooling power ﬁ \\\\\ = min C(v;y);st... E o g 3 BaCkward:
loss functions Thermal dynamics [&f ------{i} var. v={q,7} ; g training strategy
,,,,, L Par. ¥ ={a,b,F} i
UBIERREis < | Gradient update
Auxiliary gradient Opt-oriented gradient g™ =0dC/oy
9™ =aL/oy v
—> Coordinated gradient descent

30



Methodology

o Forward: Optimization-oriented loss function

o Downstream optimization problem ——— (obj.: loss function)

Obj: energy consumption and temperature violation

Subject to: model; power limits, comfort range
T(t + At) = 7(t) + At - (at(t) + bg(t) + F(x(t)))

min C®' =3 eip(t) + e (t) + e (1) a(t) = 1p(t) T, — () < 7(t) <7 + V(1)
L < p<p(t)<p 0<e(t),eV(t) <e
o Gradient derivation (obj. w.r.t. model parameters)
min C°'(v) Lagrangian Clv. A ) colrf;:i-on BC(U’):;H;W
[ v? 7 — —_ =
Secision ‘Jv, P) =0 function N 2 ; ) , K {,(:E;)’l;bi’)b) 0
variables /({,p) <0 C®(v) + A" f(v,¢) + p h(v,9) p h(v,
Parameters Implicit function theorem
l Variable w.r.t. Chain rul R
oK oK ov parameters Ov oK1t ok ainruie ont | OCPY | OCPt Qv |
+ . — O —_— - = | — > 1 g pt = . 1
oY Ov Y o [av] O ! oY Jv O |

B. Amos, et al, “Optnet: Differentiable optimization as a layer in neural networks,” in International Conference on Machine Learning. PMLR, 2017, pp. 136-145.

31



Methodology

o Forward: Physics-informed auxiliary loss function

o Only minimizing the obj. will deviate from real physical characteristics (accuracy);

o The deviation is hard to correct in a “unsupervised” way (without ground-true model).

1.6 —
—— Accuracy i i —— Objective
1.4 P
1.2 i E
& 1.01 B
" N
£ 038 o
o .
»
0.4 P
R ) ) a— 0.2 ni
-0.7 -0.6 -0.5 -0.4 -03__.-- =0.2 1
Parameter (b)--"" en oﬂW'ﬁ‘
——————— ion \Nh
,,,,,, . ect\
& . q dif
‘r\|ng

r35

N
w

S
Cost (k$)

-
-
-
-
-
-
-
=

Corrected with
30 physical characteristics

-
-

Physical characteristics ----- > Equivalent penalty terms
a<0 Stability issue a < (0 = min [a]+
b<0=min [b]"
or(t+At) Power correlation oF in [—-2FE 1+
aqy =0 ago > 0= min [ o ]+
Hgrad Z O = min [— Bgrad]
Ot (t+At) T (t+At) OT(t+At) r : _ OF 1+
aTou((t) - 07 aqrad(t) Z 07 qucc(t) Z O aqOCC 2 0 :> min [ aqccc]

Disturbance correlation

Physics-informed loss function: MSE & penalty terms

|
|

|
| T |
| T

oF OF oF '

1 — + b+ _ + 1_ + [__~Z- 1+
: R l[a] 3 [ ] 3 [ 8TOUJ 3 [ 8qmd] 3 [ 6Q'OCC] :

B o o s e e e e e S R R R R S e S R R R S S R e S e R R S e

32



Methodology

o Backward: Coordinated gradient descent

o The given two gradient vectors could be contradictory
v

-

Model Gradients =
,,,,,,, ( phy 0pt> — ( phy)T gt < 0
Objective function g Opt \ fffff g ? g g g
— U o~ T
e gphy o Dete_rmlne a coordinated grad_lent vector g _that minimizes the
Ioss . conflict degree between the given two gradients
model ?pdate length ingle ,,,,,,,
— oo i phy opt
Determination Coordination ax. min 1(".9). (9™, 9)} The objective is to minimize the conflict degree
ol Warm ot 7 h h (i.e., maximize inner product) by finding the
J; R S — g g s.t. [lg — g™ < rlg™ | new vector g.
\ * Flin‘?1| Backward [
solution
\\ propagation g™ . . .. . . .
e o Find the optimal training epoch by selecting the optimal ob;.
—lose | ——— | fdwnerdusr within the preset error threshold.
1
1
1
I Ephy - Ephy
1 . opt k 0 phy ~opt
e & . <
min C. |s:t oy <e(L,°,C) el

0

33

. Liu, et al, “Conflict-averse gradient descent for multi-task learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 18 878-18 890, 2021



Case Study

o Simulation setup

o Data preparation

» Building prototypes: 6-zone, 10-zone, 18-zone
» Simulation software: Energyplus
» Training period (01/06-31/07) and test period (01/08-31/08)

o Parameter setting

Neural ODE Optimization
e
~~~~~~~~~~ Parameter Value | Parameter __.----Value
“hidden layers 3 n 3.6
hidden units 48 P, D 0, 60 (kW)
Model activation ReLU s 0.5 ($/°C)
optimizer Adam cY 0.8 ($/°C)
batch size 16 e 0.5 (°O)
/ / wh 5.0
Algorithm K 30 , € 0.05
v

Coordinated gradient vector

34



Case Study

o Evaluation of operation costs

o Procedure

_ _ _ _ Quantify the actual ex-post
|dentify thermal | Solve optimal daily | Simulate the real operation performance of
dynamics models decisions building operation the model
Proposed method and comparison Commercial solvers Energyplus
o Cost comparison
Sum = Power + Tem « The costs are mainly reduced in the term corresponding to
I | —— MTO: modeling-then- y P 9
min CP =) "e;p(t) + VeV (t) + et (t) optimization temperature violations:
teT
— « The temperature violation is affected by all factors, while
Buildings | Costs Training Test
o MTO Proposed  vs MTO MTO Proposed  vs MTO . . . .
Power | 31697 31457  -0.76% | 15670 15588  -0.52% the power consumption is mainly caused by the cooling
6-zone Tem 26.35 11.99 -54.50% 24.51 14.89 -39.25%
[ Sum | 343327 32656 -4.88% | 18121 17077  -5.76% .
Power | O11.13 89306  -1.98% | 48180  473.97  -1.63% power factor;
10-zone i _Te_m_ 1 _51_.0;/ o _419% o _6{5‘20 e gSJl_ o 2_6.21_ N _4._351% ) . o . .
Sum | 962.20  — 94099 "~ -2.20% | 50691 ~ 50018 ~ "-1.33% « During the training process, the temperature violation part
Power | 2960.45 2917.53 -1.45% 1448.79 1441.24 -0.52%
18-zone Tem 63.62 52.15 -18.03% 28.31 30.26 6.89% .
" Sum | 302407 ~ 2969.68" ~ 1.80% | 1377.10 ~ 1470.50 ~ -0.38% has thus a larger improvement space.
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Case Study

o Statistical accuracy

o Statistical metrics

Buildings | Dataset RBAIE MaE B2

i MTO  Proposed vs MTO MTO Proposed  vs MTO MTO Proposed  vs MTO

6-zone Train 0.2022 0.2045 1.14% 0.1542 0.1561 1.23% 0.9841 0.9837 -0.04%
Test 0.2710 0.2765 2.03% 0.1892 0.2026 7.08% 0.9729 0.9718 -0.11%

10-zone Train 0.3867 0.3928 1.58% 0.3151 0.2945 -6.54% | 0.8734 0.8694 -0.46%
Test 0.4294 0.4533 5.57% 0.3195 0.3252 1.78% 0.8219 0.8015 -2.48%

T Train 0.2990 0.3059 2.31% 0.2241 0.2309 3.03% 0.8828 0.8773 -0.62%
Test 0.3322 0.3326 0.12% 0.2665 0.2667 0.08% 0.8293 0.8290 -0.04%

Temperature (°C)

o Detalls in temperature curves

25

N
s

N
w

N
N

]
[y

20

—— True — MTO —— Proposed

12/08

13/08
Date

14/08

Daily temperature variation of the 6-zone building

4%|BR
4| 5E
L\
0, 2
& S

The MTO purely pursues minimizing MSE
losses;

The proposed method sacrifices some
accuracy in pursuit of the operation cost
minimization.

» The “conservative” nature of the temperature data
generated by the proposed method;

« Compared with MTO, the data are generally lower
in the peak period and higher in the valley period,;

This

conservativeness tends to reduce

temperature violations part in decision costs.
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Problem Statement

Forecasting Decision making Traditional
| v | y approach
X, |npUt feature of sector n Dataset Forecast Model MES Scheduling
Sector 1 — Load 1 1 Energy converter

wy,: Model parameters of sector n P! ; :

| - :
M., (X, w,))|.en: LOad forecasts of sector n

Renewable energy

\

2 3 jr|<

I
I
1
1
1
I
1
7
I
I
I
I
I
I

min C(z, Mp(Xn, wn)|nen)

I
I
\ 1
T 1
pe Energy storage :
.. ) Sector, /)’ Q = :
where C and z are the cost and decision variables for the w’@ MX . W) R |
S o
SChedU”ng of MES. Lt & MES operation model C
y Proposed
: . ‘ End-to-End Modeling T
FTO: w, and z are determined sequentially. dpproach

» Cross-sector data/information has not been shared and fully utilized to reduce operation costs.

» The forecasting and decision-making processes are treated separately so that data cannot directly serve
final decision-making in MES.
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Problem Statement

OL

Forecasting Decision making Traditional
| v [ v approach
Dataset Forecast Model MES Scheduling

min  C(z, M, (X, w,) nen)

z;wnlnEN

Cy : The operation costs If all sectors cooperate with the

MES operator, which means the sectors share their

Sec.t;).r_/l/ |
data X,, with the operator indirectly. -_XL,@ ME W) |
Wa

& MES operation model C

End-to-End approach: w,, and z are optimized as a whole. ] Fitid:to-Brid Modeling } Proposed

approach

To encourage sectors to participate in the end-to-end model, the value of the data owned by various sectors

should be quantified:

1) How many additional profits V' (N) can be derived from data sharing of various sectors in MES ?

2) How to make a fair plan {v4,v,, -+, vy} to allocate the profits V(N) to each sector ?
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End-to-End Optimization

o How to optimize w,, and z as a whole?

» An intuitive idea to train the end-to-end model is forward and backward propagation, as used for
traditional neural network training.

Decision making Module
C*M(X,, W) | e p)

How to obtain the gradient of cost C over load
forecasts M ?

y

Optimization differentiable neural network
(OptNet)

2. Solve MES

|
I
|
|
|
|
|
Optimization problem! MES optimization problem

1. Forward
forecasting model

4. Backward
forecasting model

Steps which are easy to implement @ Steps to be researched
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End-to-End Optimization

How to obtain the gradient cost C over load forecasts M ?

The MES optimization problem can be abstracted:
min C(z, M)
s.t. f(z,M) <0,h(z,M) =0

The Lagrange function of the optimization problem

L(z, A, u,M) =C(z,M) + ATf(z,M) + u"h(z, M)
The KKT condition of L(z, A, u, M):

( f(z,M) <0
h(z,M) =0
A,=0i€{12,q}
Aifi(z,M) =0,i € {1,2,-+,q}
L V,L(z,A,uM)=0

A

dc
dM

Chain principle

Implicit function:

V,L(z, A, u M)
Af (z,M)
h(z, M)

G(z, M) =

The gradient of Z over M can be obtained by the

differential principle of implicit function:
dz s 5
o = 07 Yz, M)Gy (2, M)

where

dz dz| dr  dul"
dM  ldM| dM dM
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End-to-End Optimization

» However, OptNet is designed for LP/QP problem, if What if there are integer variables in the optimization
problem?

» Two-stage end-to-end model solution method:

g
e \
i i Decision making Module : | :
1

: : C*(Mn(er Wn) |f’!€./1".) : | I - I
! 1 T 1 1 P |
: : : | |
| 2. Solve MES 1 MES optimization problem \ 03 Backward MES 1 | ?a)n
| Optimization problem! ! Optimization problem | | I ‘E
| T S—— ] E
: M,(X, wy) Mz(};z, wy) M (X, wy) J : : iz
1
1 L T 1 : | * |
| 1 1 1 )
1 ! 1 | I
! ! Wi W2 W I — I
1 1. Forward : : 4. Backward : g | |
| forecasting model ! | forecasting model . |
1 1 1 ¥ | W
1 1 1 1
1 ! X X . * I
i : X, 2 A i E Optimal sub-problem P I gﬂ
. ! Dataset | . - 7 I %
| - : : 2
: ] Load forecasting Module | __ I ! OptNet for LP(P") I g
D o o e : 7 /" o

Bopt = dCxM)ldM // v

—_————————— e —e———— L

» OptNet-embedded branch and bound method: How about incorporating OptNet into the branch and bound
search process (Construct OptNet for each yellow node)?

Higher computational complexity and storage requirements
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Data Valuation Framework

o Additional Profit Quantification

The reduced operation costs can be regarded as the additional profits
derived from the data sharing.

End-to-End data valuation:

1) Each sector n € N utilizes its own data to develop the basic forecasting
model M,,.

2) Computing operation costs of the traditional FTO approach Cg.

3) Integrating the forecasting model with the MES optimization problem
for end-to-end model training.

4) Forward-propagating the end-to-end model to calculates the operation
costs Cy.

Basic model development:
for each sector n € N do
Random initialize parameters w,, |,=ns
for k € [0, E;] do
- k
M, = M, (X,:wy”)
g, = Backward(L s s (M,,, M™))
(k+1 (k)
Wn ) = Wp — Ir - Gn

Return M, |, en

End-to-End data valuation:
5 Calculation:
Cy =min C(z, My, (X, wy)|nen)

End-to-End modeling:
for k € [0, E2] do
M = M, (X,,wy,) |?1E.-'\."
P* = Optimal sub-problem of P(z, M)
Construct OptNet for LP(P*)
for sector n € N do

L Gopt,n = Backward(OptNet)

9n = Backward(gop,» )

(k+1 (k
WD o ® g

'y Calculation:
Cn = min C(z, My ( Xy, wn)|nen)

~

Additioanl profits quantification:
V) =Cx =G
| Return V()
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Data Valuation Framework

o Additional Profit Allocation Shapley value may be negative

Shapley value has been widely adopted to measure the members’ contributions to the collaboration earning.

. V(SUm}) — V(S)]*

:WI (wp4>
SCN\{n}
|S]

Zero-Shapley value: Un

V(S): the value of the cooperation formed by union S Two remaining question:

[[]" = max {0, } -
» When some sectors within the MES do not
N participate in the end-to-end modeling, how to
R4 (s, measure V(5)?
V(s,), V(s;) ;;Ezz :‘; » The zero-Shapley value does not satisfy the
sector s, 327 budget balance property:
V(s,, S3) V(s,, S35 S;)
V(ss, S,) V(Ss, Sy, S1) Un

() = 5 (V) = V(®))
V(U) for U c S\{s,} V(U U s;) for U c S\{s;} ieN Vi
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Data Valuation Framework

o Additional Profit Allocation

When only sectors in U participate in the cooperation, how to measure V(U)?

9 End-to-End data valuation:
10 'z Caleulation:

min Cn(Z» M, (X, Wn) |nEN)

1 Cp = min C(z, My, (X, wn)|nen) WnineN >

12 End-to-End modeling: zv{/mn Cn(Z, Mn(Xn: Wn) | cu’ Mn(Xn: Wn) | eN U)

13 for k € [0, E5) do niney n MEN\

14 M = M, (X, W, )|nen

15 P* = Optimal sub-problem of P(2, M) (, denotes the operation costs of the “partially integrated” end-
16 . Construct OptNet for LP(P7)_ _ to-end model.

17 | for sector n € N do |

18 : Gopt.n = Backward(OptNet) :

19 : In = Backward(gopt.n ) I'\ _ -

2 | wiF Y —wl® _1r. g, | » Only sector n € U will update their model.

2| Cy Caleulation: > Sectors in N\U will remain their model parameters unchanged
2 | O =minC(z, Mn(Xn, wn)|nen) (denoted as w,,) and only submit final forecasts

23 Additioanl profits quantification: Mn(Xn; V_Vn)lnEN\U to the operator.

24 | VIN)=Cx—-Cg

25 Return V(N)



Case Study

o Experiment result

 Forecasting performance & convergence properties

LOAD FORECASTING PERFORMANCE OF THREE SECTORS IN MES

Model MAE RMSE MAPE

Benchmark 82.592 113.102 3.565

Electricity sector End-to-End 82.383 112.951 3.562
Accuracy Variation 0.25% 0.13% 0.00%

Benchmark 120.967  178.530 9.074

Heat sector End-to-End 121.331  181.348 9.216
Accuracy Variation  -0.30% -1.58%  -0.14 %

Benchmark 487.406  626.781 12.895

Cooling sector End-to-End 477.677  615.956 12.799

Accuracy Variation 2.00% 1.73% 0.10%

» Compared to FTO, The end-to-end approach has
little effect on the forecasting accuracy.

Daily Operation cost (kCNY)

—— Training set
—— Testing set

-

0 1 2

3

Epoch of end-to-end modeling

Daily average cost of the training/testing dataset in the

end-to-end modeling process

» The proposed method possesses favorable

convergence properties.
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Case Study

o Experiment result

Operation cost

Daily operation costs for 12 months in 2017 (KkCNY)

FTO End-to-End Ideal Improvement
Jan.  88.517 88.115 86.808 0.454 %
Feb.  87.500 87.064 85.730 0.498 %
Mar.  86.687 86.294 85.174 0.453 %
Apr.  88.015 87.579 86.170 0.495 %
May  88.282 87.873 86.338 0.463 %
Jun.  92.834 92.442 91.786 0.423 %
Jul.  95.141 94.821 94.402 0.336 %
Aug. 93.729 93.373 92.961 0.379 %
Sep.  92.823 92.477 92.375 0.373 %
Oct.  87.576 87.301 87.197 0.314 %
Nov.  86.505 86.231 85.681 0.316 %
Dec.  85.328 85.140 84.527 0.220 %

Deal: 31012.06 kCNY
FTO: 31418.71 KCNY (101.31% ideal cost)
End-to-End: 31294.04 KCNY (100.91% ideal cost)

[y 2 +
(=] o o
1 1 1

[a—
o
1

Monthly additional operation cost (KCNY)

o

s FTO
[ End-to-End

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Months

Monthly additional operation cost of FTO and end-to-end
model compared to ideal cost (KCNY)

» Operation achieves a 0.40% reduction, resulting in

annual cost savings of 124.66 kCNY.

a7



Case Study

o Experiment result

N
(e
1

Data value of cooperation
(KCNY)

Electricity sectors not enrolled
100 - Electricity sectors enrolled

__._

——

0 an
{hc & ehc} {h & eh}

(a)

» Electricity sector makes little contribution.
» Accuracy of the electricity sector is relatively high.

« The deviation of the electricity price in intra-day and % 0.0020-
day-ahead is relatively small.

» Heat sector cooperates with the MES operator can

{c & ec}
Cooperation combination

g .\0/\' g Cooling sectors not enrolled
g 100 - g 100 - Cooling sectors enrolled
&~ g
§ ; Heating sectors not enrolled § ;
c g Heating sectors enrolled o5
8~ 501 5~ 501
< 3]
> >
] 3]
s 15
0 T T T T 0 T T T T
{ec & ehe}  {e & eh} {c & he} {© & h} {eh & ehc} {e & ec} {h & hc} {© & c}
Cooperation combination Cooperation combination
(b) (©)
11
0.0035 A :‘ i FTO
00030 i :,: i E El’ld-tO-EHd
[ 11
0.0025 1 i i
> i . . .
2 ¥ moves in the direction of
£ 0.0015 1 t over-forecasting
=9
0.0010 1 i i
1
0.0005 i
[N
0.0000 1 E
—1000 —500 0 500 1000

markedly improve additional profits.

Forecast Error

The distribution of the forecasts error of heat sector 48
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Conclusions

o We proposes new insights into exploring deeper integration learning with optimization in urban
energy systems:

» Propose Neural ODEs-based model structure in model predictive control for building energy management. The
proposed learning-based method balances robust and accurate requirements in thermal dynamics modeling. Adaptive

MPC mechanism is adopted to improve energy dispatch efficiency, supported by continuous modeling characteristics.

» Proposes decision-oriented modeling method of building thermal dynamics. The proposed method achieves lower

operation costs than the traditional accuracy-oriented modeling methods; the proposed model has properly learned to

avoid decision spaces leading to expensive costs.

» Presents an end-to-end framework designed to quantify data value by integrating forecasting and decision processes.

A profit allocation strategy based on contribution to cost savings is investigated, encouraging data sharing in MES.
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