ETHzürich

Smart Meter Data-Driven Load Forecasting and Price Design in the Retail Market

Graduate Seminar @ KAUST

Yi Wang, Postdoc @ ETH yiwang@eeh.ee.ethz.ch Feb 21, 2021

Appointment

2019.2- Postdoc, ETH Zurich (Prof. Gabriela Hug)

Education

- 2014.9-2019.1 Ph.D., Tsinghua University (Prof. Chongqing Kang)
- 2017.3-2018.4 Visiting Student, University of Washington (Prof. Daniel Kirschen)
- 2010.9-2014.6 B.S., Huazhong University of Science and Technology

Research Interests

Data analytics for smart energy

Cyber-physical power and energy systems

Multi-energy systems integration

Acknowledgements

The works presented here are from the collaboration with the following

professors and graduate students:

- > Prof. Gabriela Hug and Mr. Leandro Von Krannichfeldt from ETH Zurich;
- Prof. Chongqing Kang, Prof. Qixin Chen, and Mr. Cheng Feng from Tsinghua University.
- 1. <u>Yi Wang</u>, Qixin Chen, Tao Hong, and Chongqing Kang, "Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges," *IEEE Transactions on Smart Grid*, 2019, 10(3):3125-3148.
- 2. <u>Yi Wang</u>, Qixin Chen, Mingyang Sun, Chongqing Kang and Qing Xia, "An Ensemble Forecasting Method for the Aggregated Load with Subprofiles," *IEEE Transactions on Smart Grid*, 2018, 9(4): 3906-3908.
- 3. Leandro Von Krannichfeldt, <u>Vi Wang</u>, and Gabriela Hug, "Online Ensemble Learning for Load Forecasting," *IEEE Transactions on Power Systems*, 2021, 36(1):545-548.
- 4. Cheng Feng, <u>**Yi Wang**</u>, Kedi Zheng, and Qixin Chen, "Smart Meter Data-Driven Customizing Price Design for Retailers," *IEEE Transactions on Smart Grid*, 2020, 11(3):2043-2054.
- 5. <u>Yi Wang</u>, Leandro Von Krannichfeldt, Gabriela Hug, "Probabilistic Aggregated Load Forecasting with Fine-grained Smart Meter Data," *IEEE PowerTech 2021*.

Slides available at http://www.eeyiwang.com/KAUST_Seminar_Yi.pdf

Outlines

Aggregated Load Forecasting

Personalized Retail Price Design

Conclusions

The power generation and consumption should be balanced in real-time.

Flexibility: Better ways of matching supply and demand over multiple time and spatio-scales.

Various sensors and controllers will be installed in the power and energy systems.

Demand response in buildings, industry and transport could provide **185 GW** of flexibility, and avoid **USD 270 billion** of investment in new electricity infrastructure.

No.	System/ Data	Data Source	Data Type	Frequency	Data Structure
1	Economic Information	Statistic Bureau	GDP、CPI、PMI(Purchasing Managers Index)、Sales Value、 Prosperity Index	Per Month	Non structural
2	Energy Consumption Data	Energy Efficiency Platform	Electrical Load, Output, Power Quality, Temperature	15Min	Non structural /Structural
3	Meteorological Data	Meteorological Bureau	Temperature、Humidity、 Rainfall	Per Day	Structural
4	EV Charging Data	Charging-Pile RTU	Current, Voltage, Charging Rate, State of Charge	15Min	Structural
5	Customer Service Voice Data	Customer Service System	Customer Voice Data	Real Time	Non structural

Variety

Power

Systems Laboratory

10 million Smart Meters, 15min

Value???Velocity60GB per day, 21TB per year.

Volume

Participators and their businesses on the demand side

 Wang Y, Chen Q, Hong T, et al. Review of smart meter data analytics: Applications, methodologies, and challenges[J]. IEEE Transactions on Smart Grid, 2018, 10(3): 3125-3148.

EHzürich

Aggregated Load Forecasting

Introduction

Traditional load forecasting algorithms directly use historical data at the aggregation level.

With the prevalence of smart meters, fine-grained sub profiles reveal more information about the aggregated load and further help improve the forecasting accuracy.

Introduction

Three strategies for aggregated load forecasting (ALF): 1) Top-down; 2) bottom-up; 3) clustering based.

Is it possible to utilize both ensemble techniques and finegrained subprofiles to further improve the aggregated load forecasting accuracy?

Introduction

23

Primary idea: instead of treating the aggregated load as a whole, partitioning consumers into several groups and making predictions might help improve load forecasting.

A three-stage approach for aggregated load forecasting with smart meter data:

-- Load profile of one consumer

---- Clustering: divide consumers into different groups

Forecasting: develop forecasting model for each group

Aggregation: sum forecasts of all groups

ETH zürich

Aggregated Load Forecasting

Introduction

Go further steps by ensemble learning?

Deterministic Aggregated Load Forecasting

If there are different partitions of consumers, we can obtain different load forecasts.

Deterministic Aggregated Load Forecasting

How much weight should be given to each method for the optimal combination?

$$L(y - G(\mathbf{x}))$$

 $\sum_{m=1}^{M} w_m = 1, \quad w_m \ge 0, \quad m = 1, ..., M$

min

w

s.t.

To determine the weights for the forecasts

Deterministic Aggregated Load Forecasting

Weights, MAPE, and RMSE of different forecasts with different groups

N	1	2	4	8	16	32	64	128	256	 5237	Ensemble
ω	0.634	0	0	0.271	0	0	0.095	0	0	 0	/
MAPE	4.25%	5.05%	5.29%	4.74%	5.55%	4.66%	4.79%	5.09%	5.59%	 10.31%	4.05%
RMSE	210.95	229.73	228.01	217.68	244.9	217.64	227.36	232.61	250.27	 441.33	202.88

The MAPE and RMSE of the proposed ensemble method are 4.05% and 202.88 which gain 4.71% and 3.83% improvements, respectively compared with the best individual forecast.

Deterministic Aggregated Load Forecasting

\mathbf{D}_{Train}	$\mathbf{D}_{Ensemble}$	\mathbf{D}_{Test}
Clustering		J
Train Individual	Test Individual	Test Individual
	Train Ensemble	Test Ensemble

Can we update the weights in a rolling window-based manner?

\mathbf{D}_{Train}		$\mathbf{D}_{Ensemble}$	\mathbf{D}_{Test}
	Round 1 L Round 2 Round W	Train Ensemble Train Ensem	

Deterministic Aggregated Load Forecasting

Ensemble Method	Error Metrics	Window	Benchmark
	MAPE	2.85%	3.13%
$\mathrm{COP}_{\mathrm{MAPE}}$	MAE	106.13	116.66
	RMSE	149.81	166.74
	MAPE	2.89%	3.15%
$\mathrm{COP}_{\mathrm{MSE}}$	MAE	107.3	116.8
	RMSE	151.26	166.92

Benefits of window-based method

Ensemble weights over 17 weeks of the test set for all individual models.

Deterministic Aggregated Load Forecasting

Combined model:	Batch Learning		Online Learning
M	\mathbf{D}_{Train}	$\mathbf{D}_{Ensemble}$	\mathbf{D}_{Test}
$G(\mathbf{x}) = \sum \mathbf{w}_m f_m(\mathbf{x})$	1. Train Base	2. Predict Base	4. Predict Base
m=1		3. Ensemble	5. Ensemble
		Batch Mode	Online Mode

Algorithm 1: Online Protocol

input: Initial model weights $\mathbf{w}_1 \in \mathbb{R}^M$, convex loss function ℓ , weight update rule Ufor t = 1, 2, ...Calculate individual predictions $\mathbf{f}_t \in \mathbb{R}^M$ Predict $\hat{y}_t = \mathbf{w}_t \cdot \mathbf{f}_t$ Reveal true value $y_t \in \mathbb{R}$ Calculate loss $\ell(y_t, \hat{y}_t)$ Update model $\mathbf{w}_{t+1} = U(\mathbf{w}_t; \ell(y_t, \hat{y}_t))$ end

Online Convex Optimization (OCO) is a unifying framework for the analysis and design of online algorithms.

- Deterministic Aggregated Load Forecasting
 - General formula

$$\begin{split} \mathbf{w}_{t+1} &= \mathop{\arg\min}_{\mathbf{w}} \left[\ d(\mathbf{w},\mathbf{w}_t) + \eta_t \ell(y_t,\mathbf{w}\cdot\mathbf{x}_t) \ \right] \\ & \text{Distance } d & \text{Loss } \ell \\ & \text{Prevent information loss} & \longleftarrow & \text{Integrate new sample} \end{split}$$

Passive Aggressive Regression

Deterministic Aggregated Load Forecasting

Update the weights online for a better performance

Errors on test set after online learning

Method	MAPE	SD	MAE	RMSE
SGDR	2.43%	0.025	86.05	122.71
FTRLP	2.23%	0.021	81.09	113.87
OSELM	2.80%	0.029	106.03	155.03
Online Bagging	2.07%	0.021	74.33	106.23
PAR	1.67%	0.015	61.83	86.68
Proposed	1.62%	0.014	59.59	83.21
Best SVR	3.18%	0.032	117.54	171.72
Best RF	2.89%	0.029	108.25	156.84
Best GBRT	3.53%	0.032	127.81	175.78
Batch OPT	2.89%	0.028	107.55	154.88
Window OPT	2.85%	0.028	106.13	149.81

SD: Standard deviation of the absolute percentage error

- All ensembles improve their forecasting performance through online learning.
- Nearly all ensembles outperform the benchmarks after online learning.
- The proposed method has the highest accuracy and stability among all examined ensembles.

Deterministic Aggregated Load Forecasting

Update the weights online for a better performance

Method	F	Break-ev	en [hour]	
	MAPE	SD	MAE	RMSE
SGDR	39.5	86.5	41.0	64.0
FTRLP	66.5	87.0	64.0	60.5
PAR	17.5	9.0	19.5	17.5
OSELM	112.0	2.0	2833.5	no
Online Bagging	22.5	4.5	23.0	35.5
Proposed	1.5	2.0	1.5	1.5

The hour of break-even for all ensembles

4.0 PAR SGDR FTRLP 3.5 OSELM Online Bagging 3.0 3.0 Window OPT 2.0 1.5 1.0 8 16 20 23.5 0.5 4 12 Hour

MAPE over the course of the first day of online learning

- The proposed method has the earliest break-even after 2 hours for all metrics.
- > The other ensembles have the break-even approximately within one or two days.
- > An ensemble employing online learning is able to pay off at a relatively early point in time.

Proposed

Probabilistic Aggregated Load Forecasting

Compared with deterministic forecasting, probabilistic load forecasts provide comprehensive information about future uncertainties.

Probabilistic Aggregated Load Forecasting

Pinball loss (PL) and **Winkler Score (WS)** assess the calibration and sharpness simultaneously.

$$PL(\hat{y}_{t,q}, y_t) = \begin{cases} (y_t - \hat{y}_{t,q})q & \hat{y}_{t,q} \le y_t \\ (\hat{y}_{t,q} - y_t)(1 - q) & \hat{y}_{t,q} > y_t \end{cases} \quad WS(L_t, U_t, y_t) = \begin{cases} \delta_t + 2(L_t - y_t)/\alpha & y_t \le L_t \\ \delta_t & L_t < y_t < U_t \\ \delta_t + 2(y_t - U_t)/\alpha & U_t \le y_t \end{cases}$$

Performance of overall quantiles

Performance of extreme quantiles

Average Coverage Error (ACE) evaluate the reliability of the forecasts.

$$ACE = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\{y_i \in [L_i, U_i]\}} - (1 - \alpha)$$

Performance of an certain interval

Probabilistic Aggregated Load Forecasting

$$\mathbf{x}_{i} = [1, \hat{y}_{1,i}, \dots, \hat{y}_{K,i}] \qquad i \in [1, \dots, n] \qquad \stackrel{\mathsf{PCA}}{\longrightarrow} \qquad \hat{\mathbf{w}}_{q} = \operatorname*{arg\,min}_{\mathbf{w}_{q}} \sum_{i=1}^{n} \rho_{q} (y_{i} - \mathbf{z}_{i} \mathbf{w}_{q})$$
Factor Quantile Regression Averaging
$$\hat{\mathbf{w}}_{q} = \operatorname*{arg\,min}_{\mathbf{w}_{q}} \sum_{i=1}^{n} \rho_{q} (y_{i} - \mathbf{x}_{i} \mathbf{w}_{q}) \qquad \hat{\mathbf{w}}_{q} = \operatorname*{arg\,min}_{\mathbf{w}_{q}} \sum_{i=1}^{n} \rho_{q} (y_{i} - \mathbf{x}_{i} \mathbf{w}_{q}) + \lambda \|\mathbf{w}_{q}\|_{1}$$

Quantile regression averaging (QRA), a special form of quantile regression, is a kind of model averaging method.

LASSO Quantile Regression Averaging

00

Probabilistic Aggregated Load Forecasting

Similar to deterministic forecasting.....

\mathbf{D}_{Train}	$\mathbf{D}_{Ensemble}$ \mathbf{D}_{Test}
Round 1	<u>Train Ensemble</u> <u> Test </u> Train Ensemble Test
Round 2	<u>Train Ensemble</u> <u>Test</u>
Round W	Train Ensemble [Test]

Probabilistic Aggregated Load Forecasting

Error metric comparison for all ensemble methods with a Prediction Interval of 90%.

Ensemble Method	Error Metrics	Offline Ensemble	Benchmark 1	Rolling Window-based Ensemble	Benchmark 2
	ACE	-1.73%	-1.85%	-0.56%	-0.92%
QRA	PBL	45.82	50.19	42.28	46.52
	WKS	788.62	846.89	728.13	791.78
	ACE	-1.80%	-1.85%	-0.45%	-0.92%
FQRA	PBL	45.82	50.19	42.26	46.52
	WKS	787.26	846.89	727.24	791.77
	ACE	-1.71%	-1.83%	-0.63%	-0.98%
LQRA	PBL	45.84	50.2	42.26	46.53
	WKS	785.77	845.7	724.74	791.55

- The two naive benchmarks are obtained by directly forecasting the total loads without dimension reduction and clustering.
- Benchmark 2 updates the weights in a rolling window-based approach, while Benchmark 1 does not.

Probabilistic Aggregated Load Forecasting

General formula

$$\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}} \left[\ d(\mathbf{w}, \mathbf{w}_t) + \eta_t \ell(y_t, \mathbf{w} \cdot \mathbf{x}_t) \ \right]$$

- Probabilistic Aggregated Load Forecasting
- General Formula $\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}} \left[d(\mathbf{w}, \mathbf{w}_t) + \eta_t \ell(y_t, \mathbf{w} \cdot \mathbf{x}_t) \right]$
- L₂-distance : $d(\cdot) = \frac{1}{2} \|\cdot\|^2$

•
$$\varepsilon$$
-insensitive
quantile loss :
 $\ell_{\varepsilon,q}(\mathbf{w}_q; \mathbf{x}, y) = \begin{cases} q(y - \mathbf{w}_q \cdot \mathbf{x} + \varepsilon(q - 1)) & \text{if } y - \mathbf{w}_q \cdot \mathbf{x} > \varepsilon(1 - q) \\ 0 & \text{if } -\varepsilon q < y - \mathbf{w}_q \cdot \mathbf{x} < \varepsilon(1 - q) \\ (q - 1)(y - \mathbf{w}_q \cdot \mathbf{x} + \varepsilon q) & \text{if } y - \mathbf{w}_q \cdot \mathbf{x} < -\varepsilon q \end{cases}$

• Solving KKT conditions:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta_t sign(y_t - \mathbf{w}_t \cdot \mathbf{x}_t) \tau_t \mathbf{x}_t \qquad \tau_t = min \left\{ C, \frac{\ell_{\varepsilon,q}(y_t, \mathbf{w}_t \cdot \mathbf{x}_t)}{q \|\mathbf{x}_t\|_2^2} \right\}$$

ETHzürich

Aggregated Load Forecasting

Probabilistic Aggregated Load Forecasting

- General Formula $\mathbf{w}_{t+1} = \operatorname*{arg\,min}_{\mathbf{w}} \left[d(\mathbf{w}, \mathbf{w}_t) + \eta_t \ell(y_t, \mathbf{w} \cdot \mathbf{x}_t) \right]$
- L₂-distance :
- ε-insensitive quantile loss :

Solving KKT conditions:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta_t sign(y_t - \mathbf{w}_t \cdot \mathbf{x}_t) \tau_t \mathbf{x}_t \qquad \tau_t = min \left\{ C, \frac{\ell_{\varepsilon,q}(y_t, \mathbf{w}_t \cdot \mathbf{x}_t)}{q \|\mathbf{x}_t\|_2^2} \right\}$$

Probabilistic Aggregated Load Forecasting

Mechanism of Quantile Passive Aggressive Regression

- > Extension to probabilistic forecasting: ϵ -insensitive loss -> ϵ -insensitive quantile loss
- \succ ε-insensitive region: Preserve «quantile height» between y_q and y

Probabilistic Aggregated Load Forecasting

Errors on les	st set alle	rbatch	learning
Method	ACE	PBL	WKS
QSGD	-0.92%	51.60	722.43
QPAR	2.23%	47.61	1075.02
QNN	-2.55%	54.94	776.86
Batch QRA	-5.25%	44.55	734.64
Window QRA	-1.90%	40.30	659.94

The performance on Irish load data

Errora on toot ofter botch loarning

*QSGD: Quantile Stochastic Gradient Descent

*QPAR: Quantile Passive Aggressive Regression

*QNN: Quantile Neural Network

Method	ACE	PBL	WKS
QSGD	-0.02%	30.04	527.94
QPAR	-1.69%	29.47	484.59
QNN	-0.64%	56.10	930.23
Batch QRA	-5.25%	44.55	734.64

-1.90%

40.30

659.94

Errors on test set after online learning

*Window OPT: window-based optimization

Window QRA

- All ensembles outperform the benchmarks after online learning except QNN
- > The proposed method has the highest accuracy regarding pinball loss and winkler score
- A substantial performance improvement can be achieved by ensembles incorporating online learning.

Probabilistic Aggregated Load Forecasting

QSGD online forecast over one week

QPAR online forecast over one week

Probabilistic Aggregated Load Forecasting

The performance on Irish load data

The hour of break-even for all ensembles					W my m
Method	Break-Even ACE	Break-Even PBL	Break-Even WKS	0- [%] ACE	M
QSGD QPAR	508.0 h 2810.0 h	35.0 h 138.5 h	307.0 h 253.5 h	-10-	
QNN	687.0 h	no	no	-15	1

- The proposed QPAR has earliest WKS break-even
- QSGD has earliest Break-even for ACE and PBL
- > Online learning enables to outperform batch approach within a month.

ETHzürich

Aggregated Load Forecasting

Short Summary

Aggregated Load Forecasting

Short Summary

- High quality point forecasting can be generated by making full use of the fine grained smart meter data;
- On this basis, we can utilize ensemble techniques to further improve the forecasting accuracy;
- Online learning can be a powerful tool in short-term load forecasting by integration new information and the proposed modified PAR model is very suitable in this context, especially as an online ensemble method;
- PAR model can be further extend to quantile PAR model using quantile regression averaging for probabilistic forecasting.

Introduction

The opening of electricity retailing market

Consumers choose freely in market

How to provide **diversified services** for different consumers to enhance the competitiveness of the retailers?

The need for diversified service

Main Idea

- Data-driven price design. Smart meter data contains great value which may help retailing price design.
- Respect self-selection. Consumers' willingness and rights to choose must be respected.

ETHzürich

Personalized Retail Price Design

Problem formulation - Consumer

Consumer Utility

- Measure satisfaction
- Comparison between different plans
- Diminishing marginal utility

 $F(\boldsymbol{p}, \boldsymbol{q}) = u(\boldsymbol{q}) - \sum_{t=1}^{T} p_t q_t$

Consumer Strategy

Strategic and rational consumers:
 Utility Maximization

$$egin{aligned} oldsymbol{q}^*(oldsymbol{p}) &= rg\max_{oldsymbol{q}} \left\{ F(oldsymbol{p},oldsymbol{q})
ight\} \ U(oldsymbol{p}) &= \max_{oldsymbol{q}} \left\{ F(oldsymbol{p},oldsymbol{q})
ight\} = F(oldsymbol{p},oldsymbol{q}^*(oldsymbol{p}))
ight\} \end{aligned}$$

How can smart meter data be useful? $F(\mathbf{p}_{(0)}, \mathbf{q}_{(0)}) = 0 \quad \frac{\partial F(\mathbf{p}_{(0)}, \mathbf{q}_{(0)})}{\partial q_t} = 0, \quad \forall t$

Original electricity consumption is the realization of Utility Maximization!

Problem formulation - incentive

Individual rationality

If the retailer wants consumer *k* to choose pricing scheme *r*, the retailer **must guarantee choosing** *r* **is consumer** *k*'**s dominant strategy**

$$U_k(oldsymbol{p}_r) \geq U_k(oldsymbol{p}') \;\; orall k$$

Compatible incentive

If the retailer wants consumer *k* to choose new pricing scheme *r*, the retailer **must guarantee choosing** *r* **is at least as good as previous situation**

$$U_k(oldsymbol{p}_r) \geq \! U_k(oldsymbol{p}_0) \;\; orall k$$

Problem formulation - Retailer

- Electric Reliability Council of Texas (ERCOT)
- Extreme Cold Scenarios
- Rotating Outages
- Extreme-high Price !!!

- Price Uncertainty
- CVaR

https://www.dallasnews.com/opinion /commentary/2021/02/20/dont-justblame-ercot-what-caused-outagesis-our-competitive-electricity-market/

Oper Day	Interval Ending	HB_BUSAVG	HB_HOUSTON	HB_HUBAVG	HB_NORTH	HB_PAN	HB_SOUTH
02/19/2021	0515	8964.32	8968.28	8967.64	8957.56	8967.52	8975.67
02/19/2021	0530	8963.28	8968.24	8966.67	8956.54	8966.46	8973.94
02/19/2021	0545	8962.84	8967.35	8966.32	8955.76	8965.93	8974.62
02/19/2021	0600	8964.70	8968.24	8967.99	8957.93	8967.91	8976.33
02/19/2021	0615	8963.11	8968.24	8966.52	8956.37	8966.29	8973.66
02/19/2021	0630	8963.13	8968.26	8966.53	8956.39	8966.31	8973.68
02/19/2021	0645	8964.98	8970.52	8967.60	8959.24	8964.72	8975.13
02/19/2021	0700	8966.01	8971.77	8968.21	8960.81	8963.90	8975.94
02/19/2021	0715	8968.81	8971.73	8970.81	8963.56	8966.76	8980.70
02/19/2021	0730	8965.21	8971.16	8967.20	8960.24	8961.66	8975.22
02/19/2021	0745	8965.18	8968.07	8966.64	8961.41	8963.00	8973.38
02/19/2021	0800	8960.38	8967.47	8962.38	8954.77	8953.21	8972.88
2/19/2021	0815	8989.40	8990.41	8988.92	8989.58	8984.42	8990.91
2/19/2021	0830	8977.41	8981.32	8978.40	8974.20	8970.94	8985.44
2/19/2021	0845	8987.87	8991.29	8986.79	8987.26	8975.92	8995.41
2/19/2021	0900	8987.12	8990.86	8985.60	8986.93	8971.74	8995.02
/19/2021	0915	3206.30	100°°°°	10e 3205.68	3205.44	3198.12	3212.74
02/ 1021	0930	35.61	37.85	35.44	34.39	31.05	41.33
02/19/202	0945	36.46	38.70	36.29	00		42.19
02/19/2021		27.05	27.84	0.5	26.62	25.45	29.06
02/19/2021	1015	61	20.00	27.54	23.59	19.61	44.55
02/19/2021	1030	25.78	27.65	26.02	22.41	18.40	38.85
2/19/2021	1045	23.35	24.92	23.52	20.44	16.86	34.86
2/19/2021	1100	26.18	28.53	26.01	24.83	22.90	32.52
02/19/2021	1115	25.17	28.25	25.02	23.29	20.80	33.49
02/19/2021	1130	22.49	24.31	22.16	21.38	20.29	28.65
02/19/2021	1145	21.58	23.06	21.12	21.28	21.05	24.99
02/19/2021	1200	18.64	19.78	18.16	18.62	18.77	21.02

Problem formulation - Clustering

Problem formulation – Optimization framework

Optimization framework – an MINLP model

* nonlinear terms are marked in red

Optimization framework – an MINLP model

Constraints : Utility and response

$$q_{t} = \left(\frac{p_{t}}{p_{t(0)}}\right)^{\frac{1}{\alpha-1}} \times q_{t(0)} \qquad \text{Reactions}$$
$$U(\boldsymbol{p}) = \sum_{t=1}^{T} \left(\frac{1}{\alpha} - 1\right) \left[\left(\frac{p_{t}}{p_{t(0)}}\right)^{\frac{\alpha}{\alpha-1}} - 1 \right] \times q_{t(0)} p_{t(0)} \qquad \text{Utility}$$

Constraints : Risk measure CVaR Loss in DA Loss in RT

$$CVaR = \inf_{a \in R} \{ a + rac{1}{(1 - lpha^{CVaR}) \cdot N_S} \sum_{n_S = 1} [(-\Delta R^D - \Delta R^{RT}) - a]^+ \}$$

Constraints : Price structure Price category: CPP RTP ToU

MINLP model

Lower Risk Less changes

$$egin{aligned} &\sum_{m=1}^M e_{r,t}^m = 1, \qquad &\sum_{t=1}^T e_{r,t}^m \geq D_{\min}, \ orall m,r \ &|e_{r,T}^m - e_{r,1}^m| + \sum_{t=2}^T |e_{r,t-1}^m - e_{r,t}^m| = 2, \ orall m,r \ &p_{r,t} = \sum_{m=1}^M e_{r,t}^m imes p_r^m, \ \ orall t,r \quad m ext{ block ToU} \end{aligned}$$

MILP model

* nonlinear terms are marked in red

Power

aboratory

Piecewise linear approximation

Big M method

Solution method

Solution method

* new variables are marked in blue

Case Study

- ➢ 6435 consumers in Ireland.
- Data collected every 30 minutes.

Linear segment approximation(12 segments)

Case Study - clustering

Case Study – prices and responses

Case Study – sensitivity analysis on elasticity

Case Study – sensitivity analysis on risk weighting factor

Case Study - sensitivity analysis on clustering methods

	RP	SW	AP	F/SC
Original	752.03	0	0.2	-/-
HIA-COMP	1186.01	339.72	0.1947	<u>65%/89%</u>
HIA-WARD	1188.70	10.01	0.1971	<u>33%/59%</u>
KM-PLUS	1145.68	7.01	0.1973	<u>9%/20%</u>
KM-SAMPLE	1137.61	4.50	0.1975	<u>22%/48%</u>
KM-UNIFORM	1142.61	15.76	0.1973	<u>11%/31%</u>
FCM(m=1.1)	1150.43	9.43	0.1970	<u>30%/47%</u>
FCM(m=1.2)	1176.08	18.64	0.1968	<u>19%/35%</u>
FCM(m=1.3)	1208.06	0.64	0.1970	<u>8%/20%</u>
GMEM-PLUS	1145.82	36.01	0.1965	<u>13%/28%</u>
GMEM-RAND	1144.85	46.60	0.1967	<u>10%/24%</u>

How much profit does the retailer get?

• RP=Retaling Profit(\$)

How much welfare do the consumers get?

- SW=Social Welfare
- AP=Average Price(\$/kWh)

How well does clustering perform?

- F/SC=First/Second Choice
- The most accurate prediction
- The most profitable for both retailer and consumers

Short Summary

- The Stackelberg game between the retailer and the strategic consumers, an incentive-compatible market, and the retailer's costs, risks and purchasing strategy are considered in this model.
- The ToU tariff can achieve the effects of peak shaving and valley filling, thereby simultaneously increasing the retailer's profitability and ensuring consumers' willingness and preferences.
- How elasticity of consumers and risk weighting factor of retailer influence the designed price is studied.

Conclusions

- □ How to make full use of fine-grained smart meter data?
- ❑ A better understanding of the consumer behavior helps to improve the accuracy/performance of aggregated load forecasting.
- A better understanding of the consumer behavior helps to make better decision for both retailer and consumers.
- □ Any other applications???

Any other applications???

No.	System/ Data	Data Source	Data Type	Frequency	Data Structure
1	Economic Information	Statistic Bureau	GDP、CPI、PMI(Purchasing Managers Index)、Sales Value、 Prosperity Index	Per Month	Non structural
2	Energy Consumption DataEnergy Efficiency PlatformElectrical Load, Output, Power Quality, Temperature		15Min	Non structural /Structural	
3	Meteorological Data	Meteorological Bureau	Temperature、Humidity、 Rainfall	Per Day	Structural
4	EV Charging Data	Charging-Pile RTU	Current, Voltage, Charging Rate, State of Charge	15Min	Structural
5	Customer Service Voice Data	Customer Service System	Customer Voice Data	Real Time	Non structural

Advertisement.....

Science Press Beijing

🖉 Springer

Foreword

Smart grid is a cyber-physical-social system where the power flow, data flow, and business flow are deeply coupled. Enlightened consumers facilitated by smart meters form the foundation of a smart grid. Countries around the world are in the midst of massive smart meter installations for consumers on the pathway towards grid digitalization and modernization. It enables the collection of extensive fine-grained smart meter data, which could be processed by data analytical techniques, especially now widely available machine learning techniques. Big data and machine learning terms are widely used nowadays. People from different industries try to apply advanced machine learning techniques to solve their own practical issues. The power and energy industry is no exception. Smart meter data analytics can be conducted to fully explore the value behind these data to improve the understanding of consumer behavior and enhance electric services such as demand response and energy management.

This book explores and discusses the applications of data analytical techniques to smart meter data. The contents of the book are divided into three parts. The first part (Chaps. 1–2) provides a comprehensive review of recent developments of smart meter data analytics and proposes the concept of "electricity consumer behavior model". The second part (Chaps. 3–5) studies the data analytical techniques for smart meter data management, such as data compression, bad data detection, data generation, or The third part (Chaps. 6–12) conducts application-oriented research to depice tem recognition, personalized tariff design for retailers, socio-demographer mation identification, consumer aggregation, electrical load forecastiff the prospects of future smart meter data analytics (Chap. 13) are also provide the end of the book. The authors offer model formulations, novel algorithm and detailed case studies in various chapters of this body.

One author of this book, Prof. Chongqing Kang, is a profetonal colleague. He is a distinguished scholar and pioneer in the power and eargy area. He has done extensive work in the field of data analytics and load forecasting. This is a book worth reading; one will see how much insight can be gained from smart meter data

viii

Foreword

alone. There are definitely broader qualitative understanding that can be gained from massive data collected in the realm of generation, transmission, distribution, and end use of the smart grid.

September 2019

Prof. Saifur Rahman Joseph Loring Professor and Founding Director Advanced Research Institute at Virginia Tech Arlington, VA, USA

President of the IEEE Power and Energy Society New York, NY, USA

This is a book worth reading; one will see how much insight can be gained from smart meter data alone.

Prof. Saifur Rahman IEEE Fellow President of the IEEE Power and Energy Society

Yi Wang, Qixin Chen, Chongqing Kang, "Smart Meter Data Analytics," Springer, 2020.

Thank you for your attention

Yi Wang yiwang@eeh.ee.ethz.ch www.eeyiwang.com

