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Backgrounds

The power generation and consumption should be balanced in real-time.

Traditional Renewable guuy  Energy
Generation Energy ™= pemand

Real-time Balance

e

in Power Systems

=

Flexibility: Better ways of matching supply and demand over multiple time and spatio-scales.
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Backgrounds

Various sensors and controllers will be installed in the power and energy systems.
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Demand response in buildings, industry and transport could provide 185 GW of flexibility,
and avoid USD 270 billion of investment in new electricity infrastructure.

PL

Power
Systems o https://www.iea.org/reports/digitalisation-and-energy | 7
Laboratory



https://www.iea.org/reports/digitalisation-and-energy

10 million Smart Meters, 15min
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E> 60GB per day, 21TB per year.
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Aggregated Load Forecasting

> Introduction

Traditional load forecasting
algorithms directly use historical
data at the aggregation level.

With the prevalence of smart
meters, fine-grained sub profiles
reveal more information about the
aggregated load and further help
improve the forecasting accuracy.
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Aggregated Load Forecasting

> Introduction

Three strategies for aggregated load forecasting (ALF):
1) Top-down; 2) bottom-up; 3) clustering based.

house 1 . —ﬂ)
. . T add cluster’s prediction cluster’s dd
Is it possible to utilize house 2 @) T consumption Daaaaay . C " LN
both ensemble house 3 @) ——>
techniques and fine-
. . dd
grained subprofiles to house 4 @) —=<— | d | N
. add ; cluster’s prediction cluster’s a aggregate
further Improve the house 5 . consumption — forecast demand
aggregated load - — e

forecasting accuracy?

cluster’s pl‘edtction cluster’s
house n . —) consumption forecast
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Aggregated Load Forecasting

> Introduction

Primary idea: instead of treating the aggregated load as a whole, partitioning
consumers into several groups and making predictions might help improve load
forecasting.

A three-stage approach for aggregated load forecasting with smart meter data:

Load profile of one consumer

-
-
-
-
-
-
-~
-

€-me- Clustering: divide consumers into different groups

’[ J\ T \/\ <+ [Forecasting: develop forecasting model for each group

<« Aggregation: sum forecasts of all groups
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Systems | 13
Laboratory

PL




Aggregated Load Forecasting

> Introduction

Go further steps by ensemble learning?

Power
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

If there are different partitions of consumers, we can obtain different load forecasts.
Different partitions ,Load profile of one consumer

----- Clustering

2
E s

<«--— Forecasting

-+ (N ) -+ <« Aggregation

I ‘/'\ - Ensemble
Power
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

How much weight should be given ™1 Ly — G(x))
to each method for the optimal M
Comb|nat|0n? S.L. Z Wi = 1 Wi = 0 m = 1 M
m=1
Real load The n-th predicted load
T ~
~ - 1 Lp*n _ Lpn o o .
W = argmin Z _— [ Len.t .t Minimize
w —1 T Len,t » MAPE

N N It can be formulated as an LP problem.
s.i. Lt:n,t — anLen,n,h an — 13 Wn 2 U
n=1 n=1

R 2

To determine the weights for the forecasts
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

Weights, MAPE, and RMSE of different forecasts with different groups

N 1 2 4 8 16 32 64 128 256 5237 | Ensemble
w 0.634 0 0 0.271 0 0 0.095 0 0 0 /
MAPE | 425% | 5.05% | 529% | 474% | 5.55% | 4.66% | 479% | 5.09% | 5.59% 1031% | 4.05%
RMSE | 210.95 | 229.73 | 228.01 | 217.68 | 24490 | 217.64 | 227.36 | 232.61 | 250.27 44133 | 20288

8000
E 7000 | A r A \ 8
= \ \ \ \ \ The MAPE and RMSE of the
6000 | A i} R & | A A
5 I \ 1 \ 1 K proposed ensemble method are
. \ A . .
R Y LR W 4.05% and 202.88 which gain 4.71%
%4"““ “ ' and 3.83% improvements,
< 3000 respectively compared with the best
= 2000 v individual forecast.
1000 ‘ ' ‘ ‘ ‘ ‘
0 48 96 144 192 240 288 336

PL

Time/30 min

red line: actual load blue line: ensemble forecast
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dashed lines: individual forecasts
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

D7rain D Ensemble Dyest
| Clustering |
| Train Individual |  Test Individual | Test Individual |
| Train Ensemble | Test Ensemble |

Can we update the weights in a rolling window-based manner?

DT’rain DEnsemble DTest
Round 1 __Train Ensemble Test;
Round 2 | Train Ensemble Test;
R.ofmd W | .Train Ensemble Test,
@L . | 18
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

Benefits of window-based method

Ensemble Method | Error Metrics | Window  Benchmark
MAPE 2.85% 3.13%
COPpmAPE MAE 106.13 116.66
RMSE 149.81 166.74
MAPE 2.89% 3.15%
COPvise MAE 107.3 116.8
RMSE 151.26 166.92
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test set for all individual models.
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

. Batch Learning Online Learning
Combined model: N
— " ~
M DTraz'n DEnsemble DTest
G(X) — Z Wmf m (X) | 1. Train Base | 2. Predict Base | 4. Predict Base |
m=1 3. Ensemble 5. Ensemble
‘ Batch Mode | Online Mode
Algorithm 1: Online Protocol
input: Initial model weights w; € R, _ T
convex loss function ¢, weight update rule U Online Convex Optimization
for t = 1,2, ... (OCO) is a unifying framework for
galgglat? 1nd1v1dufal predictions f; € R the analysis and design of online
redict yy = w; - 1 .
Reveal true value y; € R algorlthms.
Calculate loss £(y:, 1)
Update model w; 1 = U(Wt; C(ye.1e))
end
Power
@L Systems | 20
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

= General formula

w1 = argmin [ d(w, wy) + nel(ye, W - X¢) |

Distance ] Loss /
Prevent information loss Integrate new sample

Passive Aggressive Regression

Wil = argmin { W — wi ||| + (e, w-£r) + A ||W||1}

Aggressive: l

weights change B
if losses are big le(ye, w - £) =
enough

0 ifly—w-f|<¢ Passive: weights
do not change

'y —w - f| otherwise .
every time slot
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

Update the weights online for a better performance

Errors on test set after online learning

Method MAPE SD MAE RMSE
SGDR 243%  0.025 86.05 122.71
FTRLP 2.23%  0.021 81.09  113.87
OSELM 2.80%  0.029 106.03  155.03
Online Bagging  2.07%  0.021 7433 106.23
PAR 1.67%  0.015 61.83 86.68
Proposed 1.62%  0.014 59.59 83.21
Best SVR 3.18% 0.032 117.54 171.72
Best RF 2.89%  0.029 108.25 156.84
Best GBRT 353% 0.032 127.81 175.78
Batch OPT 2.89%  0.028 107.55  154.88
Window OPT 2.85% 0.028 106.13  149.81

SD: Standard deviation of the absolute percentage error

PL
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» All ensembles improve their
forecasting performance through
online learning.

» Nearly all ensembles outperform
the benchmarks after online
learning.

» The proposed method has the
highest accuracy and stability
among all examined ensembles.
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Aggregated Load Forecasting

» Deterministic Aggregated Load Forecasting

Update the weights online for a better performance

—— Proposed
4.0 —— PAR

The hour of break-even for all ensembles - on
3.5 OSE_LM .
Method Break-even [hour] ETI AW —_ mﬁf o
Eij 1 [ -."
MAPE SD  MAE RMSE ¢
SGDR 395 865 41.0 64.0
FTRLP 66.5 87.0 64.0 60.5
PAR 175 9.0 19.5 17.5
OSELM 1120 2.0 28335 no _
Online Bagging 22.5 4.5 23.0 35.5 0.5 4 8 12 16 20 235
Proposed 1.5 20 1.5 1.5 e

MAPE over the course of the first day of online learning

» The proposed method has the earliest break-even after 2 hours for all metrics.
» The other ensembles have the break-even approximately within one or two days.

» An ensemble employing online learning is able to pay off at a relatively early point in time.

PL
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

Historical load Predicted load

10

|

|

|

|§ / SS- o fd
! |

2 |
|
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3¥7/33 35 37 39 41 43 45 47
Time / Hour

Load / MW
=)

Compared with deterministic forecasting, probabilistic load forecasts
provide comprehensive information about future uncertainties.
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

Pinball loss (PL) and Winkler Score (WS) assess the calibration and sharpness
simultaneously.

(yt —)A’t,q)q Vig SV, 0t +2(Ls —y)/a yr < Ly

PL(J;t,q’yt){ ) . 5 WS(Le. Up,y) = 4 0 Ly <ye < Ui
(y”q_y’)( _q) Vg 7 Vi oy +2(ye —Uy) /o U Sy
Performance of overall quantiles Performance of extreme quantiles

Average Coverage Error (ACE) evaluate the reliability of the forecasts.

N
, |
AC'E — N Z ]l{'.i."-i{_[-f—'i:”i]} — (1 — (1’)
=1

Performance of an certain interval
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

PCA
X; = (L4, iid] i€ [l.... - W, = alg min E po(yi — 2; W)
1 \ Factor Quantile Regression Averaging
W, = arg 1111112 pq(Yi — XiWg) W, = arg min Z pq(yi — xiwg) + Al|[wgl1
T = Wa =1
Quantile regression averaging LASSO Quantile Regression Averaging

(QRA), a special form of quantile
regression, is a kind of model
averaging method.
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

Similar to deterministic forecasting......

DT?"ain DEnsemble DTest
| Clustering |
| Train Individual | Test Individual | Test Individual |
|  Train Ensemble | Test Ensemble |
DTrain DEnsemble DTest
Round 1 L__Train Ensemble Test;
Round 2 | Train Ensemble Test
Roﬁnd W | Train Ensemble Test
Power
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

Error metric comparison for all ensemble methods with a Prediction Interval of 90%.

Ensemble Method | Error Metrics | Offline Ensemble | Benchmark 1 | Rolling Window-based Ensemble | Benchmark 2

ACE -1.73% -1.85% -0.56% -0.92%

QRA PBL 45.82 50.19 42.28 46.52
WKS 788.62 846.89 728.13 791.78
ACE -1.80% -1.85% -0.45% -0.92%

FQRA PBL 45.82 50.19 42.26 46.52
WKS 787.26 846.89 727.24 T91.77
ACE -1.71% -1.83% -0.63% -0.98%

LORA PBL 45.84 50.2 42.26 46.53
WKS 785.77 845.7 724.74 791.55

» The two naive benchmarks are obtained by directly forecasting the total
loads without dimension reduction and clustering.

» Benchmark 2 updates the weights in a rolling window-based approach,
while Benchmark 1 does not.
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

Combined model: Batch Learning Online Learning
M DT rain DEnsemble DTest
G(X) — Z Wm f’m (X) 1. Train Base | 2. Predict Base | 4. Predict Base |
m=1 3. Ensemble 5. Ensemble
Batch Mode Online Mode

= General formula

w1 = argmin | d(w, wy) + 0l (Y, W - X¢) |

Distance ( Loss /
Prevent information loss Integrate new sample

Power
Systems | 29
Laboratory

PL




Aggregated Load Forecasting

>

PL

Probabilistic Aggregated Load Forecasting

General Formula w1 = argmin | d(w, wy) + 0l (y, W - x¢) |

A%
L,-distance : 12
2 d(-) = 3]
e-insensitive qly—wy-x+e(g—1)) ify—wy-x>e(l—q)
quantile loss : leq(Wyix,y) = 0 if —ecg<y—wy-x<e(l—gq)

(q—D(y—wy-x+¢cq) ify—w, -x < —gq

Solving KKT conditions:

’és,q(yts Wt - Xt) }

Wil = Wi + 1esign(ys — Wi - X¢ ) Te Xy 7+ = min< C, 5
q 1%t 3

Power
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Aggregated Load Forecasting
» Probabilistic Aggregated Load Forecasting

General Formula v, | — argmin [ d(w, wy) + 7:0(ys, W - X¢) ]

W
= L,-distance : L2
? d(-) = 3|l
Ea,q(y: q)
= ¢g-insensitive A
quantile loss : .
q-1
_lq )
: L] [l ) .
= Solving KKT conditions: ~——~€1 ; Y=Yq
' - Ce q(Yt, Wi+ Xy
Wipl = Wi +mesign(ys — Wi - Xg)Texe 7 = ming C, (Ve > )
q |1x¢||5
@L Systems N
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

Mechanism of Quantile Passive Aggressive Regression

» Extension to probabilistic forecasting: e-insensitive loss -> g-insensitive quantile loss

» e-insensitive region: Preserve «quantile height» between y, and y
« Batch quantile regression

Systems
Laboratory

A
- - - Real value
° S|~ _ _ _~
Access to whole data sequence h Statatical Helght q=0-
 «Statistical height» implicitly given /
Time >
. . . a\J» Jq) — ~ . o
» Online quantile regression (=D —9a) iy <o
» Only access to one sample per round 1
« «Statistical height» collapses — Real value gl @ i ~ _ _ _ Realvalue
q=0.1
. g . . . . &q \/,
« ¢-insensitive quantile: Preserve «statistical height» 1
@L Power

==
Time

| 32



Aggregated Load Forecasting
» Probabilistic Aggregated Load Forecasting

The performance on Irish load data

Errors on test set after batch learning Errors on test set after online learning
Method ACE PBL WKS  Method ACE PBL WKS
QSGD -0.92%  51.60 72243  QSGD -0.02%  30.04  527.94
QPAR 223%  47.61 1075.02 | QPAR -1.69%  29.47  484.59
QNN -2.55%  54.94 776.86 QNN -0.64%  56.10  930.23
Batch QRA -5.25%  44.55 734.64  Batch QRA -5.25%  44.55  734.64

Window QRA  -1.90%  40.30 659.94  Window QRA  -1.90% 40.30 659.94

*QSGD: Quantile Stochastic Gradient Descent
*QPAR: Quantile Passive Aggressive Regression *Window OPT: window-based optimization
*QNN: Quantile Neural Network

» All ensembles outperform the benchmarks after online learning except QNN

» The proposed method has the highest accuracy regarding pinball loss and winkler score

» A substantial performance improvement can be achieved by ensembles incorporating
online learning.

PL
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

------- Real Values

6000 —— Quantile 0.05
'g‘ — Quantile 0.95
5000 : |y 1
o ! b ANTY 1
o \ ! \ i i
3 N I: ' N
5 4000 i\ | ! | :
g ,r L ; QSGD online forecast over one week
$'3000 '
o i A
o (| \
<2000 i | \ ‘

v ¥ \/ Y
1000 2900 2950 3000 3050 3100 3150 3200
Time step
fffffff Real Values

6000 —— Quantile 0,05
'g — Ouantlle 0.95 A A
<5000 i { \
o | |1 j
el ! ‘. A% B W\ "
9 A ." i i | &1 | ﬁ \
S 4000 i ! F .‘ f
Q ! l
© 3000 | i .
5 | . \ QPAR online forecast over one week
< | ! b

20001, \ \ | \V

1000 2900 2950 3000 3050 3100 3150 3200

Time step
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Aggregated Load Forecasting

» Probabilistic Aggregated Load Forecasting

The performance on Irish load data

The hour of break-even for all ensembles

Method Break-Even  Break-Even  Break-Even

ACE PBL WKS
QSGD 508.0 h 350 h 307.0 h
QPAR 2810.0 h 138.5 h 2535 h
QNN 687.0 h no no

0 240 480 720 960 1200 1440

» The proposed QPAR has earliest WKS break-even
» QSGD has earliest Break-even for ACE and PBL

» Online learning enables to outperform batch approach within a month.

PL
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Aggregated Load Forecasting

» Short Summary

Clustering L4 f::.::;g:z; 3 Aggregation
ensst:rtr:gle ) II::s"eizge:si;g?no;;: ) enosr:rirr:lgle
B - A - R
N - - S

PL
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Aggregated Load Forecasting

» Short Summary

O High quality point forecasting can be generated by making full use of
the fine grained smart meter data;

O On this basis, we can utilize ensemble techniques to further improve
the forecasting accuracy;

O Online learning can be a powerful tool in short-term load forecasting by
integration new information and the proposed modified PAR model is
very suitable in this context, especially as an online ensemble method,;

0 PAR model can be further extend to quantile PAR model using quantile
regression averaging for probabilistic forecasting.

Power
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Personalized Retail Price Design

> Introduction

» The opening of electricity retailing market » The need for diversified service
5 5 p—
& e T " ® P
ich Open

& Market Electricity

GENERATION  TRANSMISSION  DISTRIBUTION_ ______ E"ﬂ:'  USER Retailer is Best?
. RETAILER 1 s :

: : 4 . P ¥

» Consumers choose freely in market

How to provide diversified
services for different
consumers to enhance the
competitiveness of the
retailers?
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Personalized Retail Price Design

Main Idea

* Data-driven price design. Smart meter data contains great value

which may help retailing price design.
“* Respect self-selection. Consumers’ willingness and rights to
choose must be respected.

Challenges

> Diversified service
> Mine consumers’ inner need

» Satisfying consumers
» Self-selection in a real market Compatible incentive design

» Proper incentive

Discover utility Cluster load Correlate Make centroids
: preference with . optlmlzatlon
from data profiling data representatives
shape problem

Power
Systems
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Personalized Retail Price Design

% A Stackelberg game

Wholesale
market

Leader——Retailer
» Design pricing schemes |
@ Retailer » Predict consumer behaviors
el 2 B ¥ 1 1
& & & & & &

& & & & & & » Choose one pricing scheme
& & & & & & » Adapt electricity consumption

Consumers
PL

A
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Personalized Retail Price Design

Problem formulation - Consumer

Consumer Strategy

» Measure satisfaction » Strategic and rational consumers:
» Comparison between different plans Utility Maximization
» Diminishing marginal utility q” (p) =arg max{F(p,q)}
T q
F(p,q) =u(g) — ; P4 U(p) = max {F(p,q)} = F(p,q"(p))

P G2 S me;le]r(data l;e usefuls Original electricity consumption is the
Po,40) _

B4, 0, V¢  realization of Utility Maximization!

F(p0),q0) =0

Power
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Personalized Retail Price Design

Problem formulation - incentive

Compatible incentive

Individual rationality

If the retailer wants consumer £ to If the retailer wants consumer £ to
choose pricing scheme r, the choose new pricing scheme r, the
retailer must guarantee retailer must guarantee
choosing r is consumer k’s choosing r is at least as good
dominant strategy as previous situation

U,.(p,) =U,(p") VEk Ui (p,) =Ui(po) Yk

Power
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Personalized Retail Price Design

Problem formulation - Retailer

Where the retailer purchases electricity?

Forward contracts Day-ahead market Real-time market

Balance predictable load Balance unpredictable load

Which is considered more FeD Py J

important? T~o
Risk Weighting factor', [~~._ Price and load uncertainty
\ Sso
\‘ ~~$ ¥ J
Purchasing strategy Risk loss measure——CVaR
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Personalized Retail Price Design

> Electric Reliability Council of Texas (ERCOT)

> EXt re m e C o I d S ce n a ri os e i HB_BUSAVG HB HOUSTON HB_HUBAVG HB_NORTH HB_PAN HB_SOUTH

Day Ending

" 02/19/2021 | 0515 8964.32 | 8968.28 | 8967.64 | B957.56 | BU67.52 8975.67 |

> ROtatI ng Outages 021912021 | 0530 8963.28 | 8968.24 | 8966.67 | 895654 |  8966.46 | 8973.94 |

| 0211912021 | 0545 8962.84 | 8967.35 | 8966.32 | 895576 | 896593 | 8974.62
. . 02/19/2021 0600 8964.70 8968.24 | 8967.99 | B957.93 |  8967.91 | 8976.33 |
> EXtreme'hlgh Price !!! 021192021 | 0615 8963.11 | 8968.24 | 8966.52 | 8956.37 |  8966.29 | 8973.66 |

" 02/19/2021 | 0630 8963.13 | 8968.26 | 8966 53 | 895639 | 8966.31 | 807368 |
| 02/19/2021 0645 8964.98 | 8970.52 | 8967.60 | 8959.24 8964.72 | 8975.13

021182021 | 0700 8966.01 | 8971.77 | 8968.21 | 896081 |  8963.90 | 897594 ||
02/19/2021 0715 8968.81 | 8971.73 897081 | 896356 |  8966.76 | 8980.70 |f .
021192021 | 0730 8965.21 | 8971.16 | 8967.20 | 8960.24 | 8961.66 | 897522 ||, |
| 02/19/2021 0745 | 896518 | 8968.07 | 896664 | 896141 896300 897338 |
. . | 02/19/2021| 0800 |  8960.38 | 8967.47 | 8962.38 | 895477 | 895321 | 8972.88 |
> Price Uncertalnty 021192021 | 0815 | 8989.40 | 899041 | 898892 |  B989.58 |  8984.42 | éééb_éi"E
~ 02/19/2021 0830 8977.41 | 8981.32 8978.40 | 897420 | 8970.94 898544 |
> CVaR p | 02192021 0845 8987.87 8991.29 | 8986.79 | B987.26 | 897592 8995.41 [
0211912021 | 0900 | 898712 | 8990.86 8985.60 | 898693 | 8971.74 8995.02
h/19/2021 0915 3206.30 2 320568 | 320544 | 3198.12 321274
M Mg 0930 35,61 100 ;T;'Emes 3544 | 3439 31.05 | 41324
02/19/202 0945 36.46 38.70 36.29 | gozemy =/ 42.19 |
.. | 02/19/2021 | Rl 27.05 | 2784 | __agiil 2662 |  2545|  29.06 |
httpS://WWW.da||asneWS.C0m/OD|n|0n 02/19/2021 1015 s roed 27.54 | 23.59 19.61 44.55
: 02/19/2021 1030 2578 27.65 26.02 2241 18.40 38.85
/[commentary/2021/02/20/dont-just- || 02/19/2021 | 1045 2335 | 24.92 | 2352 | 20.44 16.86 | 34.86 |
blame-ercot-what-caused-outages- | ozwezez1| 10| 2618 | 2853 | 2601 | 2483 | 2290 3252 |
. . .. T 02M92021 | 1115 2517 | 28.25 | 25.02 | 23.29 20.80 | 33.49 |
is-our-competitive-electricity-market/ | sz |0 2249 2031 2216 | 2138|2029 2665 |
To0219i2021| 1145 2158 | 23.06 | 2112 | 2128 | 2105 | 2499 |
02119/2021 | 1200 18.64 | 19.78 | 18.16 | 18.62 18.77 | 21.02 |
Power : A
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Personalized Retail Price Design

Problem formulation - Clustering

Different Clustering Methods Clustering evaluation
*Hierarchical Clustering D

One method may1 avies Bouldin Index
«K-means not fit all data sets With-cluster compactness
*Fuzzy C-means Between-cluster seperation

Gaussian mixture

»  Centroid as representative
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Systems | 45
Laboratory

PL




Personalized Retail Price Design

Problem formulation — Optimization framework

Optimization framework — an MINLP model

» Objective: Retailing profit maximization
» Constraints: * Load balance
Consumer reaction | pTTTTomTomoomoosoosooooooooooes

Compatible incentive
Risk measure CVaR

------------------------------------------

> Price category: CPP RTP P:I:gl]" Lower Risk
-------- Less changes
FEL [ 5




3. Personalized Retail Price Design

Optimization framework — an MINLP model

» Objective: Retailing profit maximization

R T T Ny T
max R = ZZKTXpMqu)t — ZprXLonitXOTL — ZptD’estXLtD — X CVaR
f t=1 n=1 f i

T P f

Consumer payment  Forward contracts DA Risk Loss in DA & RT

» Constraints: Load balance

R Ne
K,Xq,,= » LIXo},Xo, + L, Vt
Z:l P Qr.: ; A ot i X DA=Day-ahead market

Consumer load Forward contracts DA RT= Real-time market

» Constraints : Compatible incentive

' Choosing p, is consumer k's dominant strategy,
> r
U.(p,) 2U.(p) ¥k k likes p than any other pricing schemes

Choosing p, is consumer £’s rational choice,
= 7
U (p,) =U.(po) Vk k likes p,than the old pricing schemes Y,

* nonlinear terms are marked in red
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3. Personalized Retail Price Design

Optimization framework — an MINLP model

» Constraints : Utility and response

b
q: — <&> X q+(0) Reactions
Do)
T
1 ) 2 o
» Constraints : Risk measure CVaR . Loss jn DA Loss in RT
1 : "4
CVaR = inf{a + ~ARP? — AR®T) —al ™
aeR{ (l_aC'VaR) NS;I:( ) ] }
. _ v T r T
> Constraints : Price str'_u_c_;:cy_l:e em =1, e, > Do, Vi,
m=1 t=1

Lower Risk

M
Less changes

pre= Y e Xp", Yt,r m block ToU

m=1

]

]

:

]

]

s .

: | m __ _m | _|_ | m . m|:2 v
: e?",T er, 1 er,tfl e?",t ) m7 r
] t=2

]

]

]

]

]

]

]

!

* nonlinear terms are marked in red

Big M method
sur  MINLP model ————= ———— MILP model .
Systems Piecewise linear approximation
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Personalized Retail Price Design

Solution method

Nonlinear model Ll
o 1 goe— //-/“' i
a—1 a—1 _\\ 41
» Power exponent p:; , pr Sl //,é/,/ _
» Two variables’ product p.: X g L |
I ) 1 1 1 1 1 1 1
3.5
Linear model 3
S 25
3
o 2

» Linear segment approximation
Take p.:X¢.:as a whole

_
[4)]

N

Price p $/kWh

v Original function value 4  Segment connection endpoints

Power
Systems
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Personalized Retail Price Design

Solution method e ,
: < !
Nonlinear model Lo, < pr
, _ _ _ _ Loz p — M X (1—ef}) E
» Binary variables times continuous variables L 0,,>0 5
> Absolute value le: 1 —e :.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.',
> CVaR \61_62§A§61_62+2XB E
E€2_€1§A§62_61+2X(1_B)E
Li del LT |
inear mode - 1 : :
i > i
| CVaR = o+ 7wy - Z}W
» Add auxiliary variables W, =0 ;
Conversed to linear equations | W, = [(-AR? — AR[™) —a] 5
) e e e e e e H
* new variables are marked in blue
Power
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Laboratory




Personalized Retail Price Design
Case Study

» 6435 consumers in Ireland.
» Data collected every 30 minutes.

=
08 ]
3‘5 06 - - 1
g 0.4 1 .
0.2 4% -
35* 1 1 1 1 1 1 1 ]
3 -
=
> 25FK 4
3
@ 2F 4
1 \‘R-\ —e
Price p SEkWh
Original function value Segment connection endpoints
Linear segment approximation(12 segments)
Power
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Personalized Retail Price Design

Case Study - clustering

Davies-Bouldin criterion values

PL

2.8

n
=]

N
a

2.2¢

N

8 9 10
The number of clusters
-8—— HIA-COMPLETE @+ KM-UNIFORM —&—— GMEM-PLUS

-O- — - HIA-WARD FCM(m=1.1) ~{— — - GMEM-RAND
—B—— KM-PLUS FCM(m=1.2)
-0 — - KM-SAMPLE FCM(m=1.3)

DB index result

Power
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1 1
Clusterl Cluster2
’ ’ \_/\A
0
1 1
sy Cluster3 Clusterd
E "\-_/— 1
-
2 05 04
3
S
&
0
1 1
Clusters Cluster6
0.4 0.5
0
0:00 8:00 16:00 23:30 0:00 8:00 16:00 23:30
Time/30 minutes
s Mean value of processed load
Clustering result
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Personalized Retail Price Design

Case Study - prices and responses

0.3 0.3} 4
Clusterl Cluster2 Clusterl 12 Cluster2
3 1
0.2 0.2r
K 2 0.8
0.1 FEFTTTTTTTINT - r B R R o 1 2000000 1 06
[eerannnn; A :'m:. R | o4
p e A Ty Y R I L H=E ol :
2 3 1.5
=03 g Cluster3 -
= Cluster3 Clusterd A uste Clusterd
= S25
&% o s vaxerv
0.2 ] TS TA 7 s, 0.2 =4
o 252 2 3 %000 - S 2 1
2 2525 %rere I A =
7,01 A 47 Yrres00s 01 J 7 =
5 2700000000 o 2 818
C G 20000000020, k, : Z =
R 7 SRR RN e 2 1 0.5
0. 0.3 0.8 8 .
Cluster5 Clustert Clusters Cluster6
2
0.2 0.2 = 0.6
: | A 4
X s
0.1 JTITTTTITT 77T 01l ;: 04 1
s SR ARRS 23
P AT T T AT T 2T T RN RS PRy SRRV P Sl e P e S ey i LR Al 0.2 bwwiies - . 0 . : .
G-00 8:00 16:00 23:30 0-00 8:00 16:00 23:30 0:00 8:00 16:00 23:30 0:00 8:00 16:00 23:30
TFime/10 minutes Time/30 minutes
¥ Load under flat pricing —— Load under ToU pricing
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Systems | 53
Laboratory




Personalized Retail Price Design

Case Study - sensitivity analysis on elasticity

Cluster] Cluster2 = 6000
i = 3

0.25 H} ] H_‘H -§ 5000
02 e 3
0.15 — =

‘£ 4000
0.1 _u;\

8 3000
=

:Szooo\l | S I N S i |
0:00 ) ‘ 16:00 23:30
Time/30 minutes
Original s c=-0.5 £=-0.4 —=_().3 —=_().2

Total load under different elasticity

Retailing profit under different elasticity

Elasticity Original 02 -03 -04 -0.5

Retailing 752 833 977 1186 1385

0.5 0:00

Elasticity i ' Time/30 minutes PrOflt($)

ToU under different elaStiCity E|ast|c|ty ‘ 8‘:\ Wi”ingness to Change ‘
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Personalized Retail Price Design

Case Study - sensitivity analysis on risk weighting factor

How CVaR, the quantity of power
bought from day-ahead market
and through forward contracts
changes with the change of risk
weighting factor?

6000

o
o
(=]
o

e chosen/signed

CVaR($)

&
o
o
(=]

T'he number of contracts

tob

4500
0

risk weighting factor rises 1 i
attach more importance to risk 1 !

] B o @
=] (=] Qo Q
o (=] (=] (=]
(=] (=] o (=]

L]
=]
o
(=]

in day-ahead market (kWh)

The quantity of electricity to be purchased

i- buy less from day-ahead market ‘ |
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Personalized Retail Price Design

Case Study - sensitivity analysis on clustering methods

AP
Original 752.03

HIA-COMP 1186.01 65%/89%
HIA-WARD 1188.70 10.01  0.1971 33%/59%
KM-PLUS 1145.68 7.01 0.1973  9%/20%
KM-SAMPLE 1137.61 4.50 0.1975 22%/48%
KM-UNIFORM  1142.61 15.76  0.1973  11%/31%
FCM(m=1.1) 1150.43 9.43 0.1970 30%/47%
FCM(m=1.2) 1176.08 18.64 0.1968 19%/35%

FCM(m=1.3) 1208.06 0.64 0.1970  8%/20%
GMEM-PLUS 1145.82 36.01  0.1965 13%/28%
GMEM-RAND  1144.85 46.60 0.1967 10%/24%

Power
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How much profit does the retailer get?

® RP=Retaling Profit($)

How much welfare do the consumers get?
® SW=Social Welfare

® AP=Average Price($/kWh)

How well does clustering perform?

® F/SC=First/Second Choice

» The most accurate prediction
» The most profitable for both
retailer and consumers
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Personalized Retail Price Design

» Short Summary

O The Stackelberg game between the retailer and the strategic
consumers, an incentive-compatible market, and the retailer’s costs,
risks and purchasing strategy are considered in this model.

O The ToU tariff can achieve the effects of peak shaving and valley filling,
thereby simultaneously increasing the retailer’s profitability and
ensuring consumers’ willingness and preferences.

O How elasticity of consumers and risk weighting factor of retailer
influence the designed price is studied.
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Conclusions

O How to make full use of fine-grained smart meter data?

O A better understanding of the consumer behavior helps to improve the
accuracy/performance of aggregated load forecasting.

O A better understanding of the consumer behavior helps to make better
decision for both retailer and consumers.

O Any other applications???

Power
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Any other applications???

No. )S;:;n Data Source Data Type F/équen\{ Data Structure
: GDP. CPI, PMI (Purchasing
Economic .
1 : Statistic Bureau |Managers Index) . Sales Value. |/Per Month|| Non structural
Information :
Prosperity Index
Energy Engrgy Electrical Load, Output, Power : Non structural
2 Consumption Efficiency Quality. Temperatur 15Min /Structural
Data Platform uallty, Temperatre "
Meteorological | | Meteorological Temperature, Humidity.
3 Data Bureau Rainfall Per Day Structural
EV Charging Charging-Pile Current, Voltage. Charging .
4 \ Data / RTU Rate, State of Charge [5Min Structural
Customer Customer
5 | Seyvice Voxce . Customer Voice Data al Tide | Non structural
ot Service System

PL
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Advertisement......

Foreword

Yi Wang - Qixin Chen -
Chongging Kang

Smart Meter
Data Analytics

Electricity Consumer Behavior
Modeling, Aggregation,
and Forecasting

Smart grid is a cyber-physical-social system where the power flow, data flow, and
business flow are deeply coupled. Enlightened consumers facilitated by smart
meters form the foundation of a smart grid. Countries around the world are in the
midst of massive smart meter installations for consumers on the pathway towards
grid digitalization and modernization. It enables the collection of extensive
fine-grained smant meter data, which could be processed by data analytical tech-
niques, especially now widely available machine leaming techniques. Big data and
machine learning terms are widely used nowadays. People from different industries
try to apply advanced machine learning techniques to solve their own practical
issues. The power and energy industry is no exception. Smart meter data analytics
can be conducted to fully explore the value behind these data to improve the
understanding of consumer behavior and enhance electric services such as demand
response and energy management.

This book explores and discusses the applications of data analytical techniques
to smart meter data. The contents of the book are divided into three parts. The first part
(Chaps. 1-2) provides a comprehensive review of recent developments of smart meter
data analytics and proposes the concept of “electricity consumer behavior model”.
The second part (Chaps. 3-5) studies the data analytical techniques for smart mete
data management, such as data compression, bad data detection, data generation,
The third part (Chaps. 6-12) conducts application-oriented research to depi
electricity consumer behavior model. This part includes electrical consumpy
tem recognition. personalized tariff design for retailers, socio-demogray
mation identification, consumer aggregation, electrical load forecasty
prospects of future smart meter data analytics (Chap. 13) are also pro;
of the book. The authors offer model formulations, novel algorit
cussions, and detailed case studies in various chapters of this

One author of this book, Prof. Chongging Kang, is a prof
is a distinguished scholar and pioneer in the power and ¢y area. He has done
extensive work in the field of data analytics and load asting. This is a book
worth reading; one will see how much insight can be gained from smart meter data

nal colleague. He

@ Springer

viii Foreword

alone. There are definitely broader qualitative understanding that can be gained
from massive data collected in the realm of generation, transmission, distribution,
and end use of the smart grid.
September 2019 Prof. Saifur Rahman
Joseph Loring Professor and Founding Director
Advanced Research Institute at Virginia Tech
Arlington, VA, USA

President of the IEEE Power and Energy Society
New York, NY, USA

This is a book worth reading; one
will see how much insight can be
gained from smart meter data alone.

Prof. Saifur Rahman
IEEE Fellow

President of the IEEE Power and Energy Society
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Yi Wang, Qixin Chen, Chongqing Kang, “Smart Meter Data Analytics,” Springer, 2020.



Thank you for your attention

Yi Wang | yiwang@eeh.ee.ethz.ch | www.eeyiwang.com
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