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Research Group: EDL@HKU

○ Energy Digitalization Laboratory at The University of Hong Kong (EDL@HKU) focuses on the

digitalization of power and energy systems with an emphasis on the distribution and

consumer side, including data analytics, data privacy, cyber-physical-social systems,

Internet-of-things, etc. The overall goal is to make the distribution systems more adaptive to

accommodate the high penetration of renewable energy toward a decarbonized future.

In addition to publishing research papers, we develop/provide:

▪ Software

▪ Hardware

▪ Technical reports

▪ Policy recommendations
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o This presentation is based on the following on-going work:

[1] Yehui Li, Dalin Qin, Vincent H. Poor, and Yi Wang, “Introducing Edge Intelligence into Smart Meters via Federated Split

Learning,” Nature Communications, under review.

[2] Yehui Li, Ruiyang Yao, Dalin Qin, and Yi Wang, “Lightweight Federated Learning for On-Device Non-Intrusive Load

Monitoring,” IEEE Transactions on Smart Grid, under review.

[3] Yehui Li, Xianhao Chen, and Yi Wang, “EdgeHEM: Sparse Federated Reinforcement Learning for Home Energy

Management at the Edge,” IEEE Transactions on Smart Grid, under review.



Contents
01   Introduction

02   Methodology

03   Case Studies

04   Other Applications

05   Discussion



Introduction

○ Electric power systems account for over 40% of global carbon dioxide emissions. Accommodating 

high penetration of renewable energy is an essential way to decarbonize power systems and thus 

alleviate climate change.

○ Harnessing demand-side flexibility is a cost-effective strategy to promote renewable energy 

accommodation 

6O'Shaughnessy E, Shah M, Parra D, et al. The demand-side resource opportunity for deep grid decarbonization[J]. Joule, 2022, 6(5): 972-983.



Introduction

○ The number of global smart meters is expected to exceed 1.2 billion by the end of 2024, and the 

global penetration of smart meters will rise to nearly 59% by 2028.

○ The ubiquitous smart meters become the central feature of future smart grids by enabling the 

collection of massive fine-grained consumption data to support demand-side flexibility.

7

Aryandoust A, Patt A, Pfenninger S. Enhanced spatio-temporal electric load forecasts using less data 

with active deep learning[J]. Nature Machine Intelligence, 2022, 4(11): 977-991.



Introduction

○ However, the current smart meters are still not smart enough. They are incapable of conducting 

on-device intelligent data analytics but can only transmit immense collected data to the data 

management system, which results in privacy violations, heavy transmission burdens, and 

low efficiency in demand-side management.

8

○ Enabling on-device intelligence for existing ubiquitous smart meters without additional investment 

in computational facilities is the most economical way to facilitate consumers managing flexible 

resources more autonomously and efficiently.

○ Enabling smart meter intelligence can reduce the need for local data uploading, which may 

alleviate privacy concerns and improve consumers' willingness to smart meter adoption.

Enabling smart meter intelligence



Introduction

○ Massive collected load data can be locally transformed into knowledge, provide deeper insights 

into the present, better understandings of the future, and practical advice on possible decisions

for the smart grid.

○ However, existing data analysis methods are not applicable to smart meters due to the limitation of 

data availability and hardware resources:

• Smart meter data involves consumers’ privacy, which causes the data barrier hindering the utilization of 

distributed big data.

• Smart meters have insufficient memory, computation, and communication resources to support the 

complicated model training.

9Véliz C, Grunewald P. Protecting data privacy is key to a smart energy future[J]. Nature Energy, 2018, 3(9): 702-704.

Data privacy concerns 

hinder the utilization of 

big data

Resource constraints 

hinder the training of 

large models 



Introduction

○ Recently, researchers have focused on harnessing the potential of edge big data and 

computational resources by pushing artificial intelligence toward end devices, giving rise to the 

concept of “edge intelligence” (EI).

10Zhou Z, Chen X, Li E, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762.

○ Considering the data privacy concerns as well as 

hardware constraints of smart meters in terms of 

memory, computation, and communication 

capacity, achieving EI on smart meters requires 

a privacy-preserving framework with high 

efficiency.

○ However, a unified framework to achieve EI on 

smart meters is still lacking.
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Framework
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 The framework enables collaborative 

training of the model deployed on 

different entities with distributed data in 

a privacy-enhancing way.

① Model splitting: cloud server splits 

the large model with optimal ratio and 

assigns a small portion to smart 

meters and a larger portion to the 

edge servers

② Model training: multiple smart 

meters collaborate with edge servers 

to train the complete model in a 

efficient way

③ Model aggregation: the trained 

models are hierarchically aggregated 

by the edge servers and the cloud 

server to update the global modelOverview of the end-edge-cloud framework



Optimal splitting
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Objective:

○ we aim to find an optimal split ratio that minimizes the 

training time subject to the memory constraints of 

smart meters.

Modelling of memory footprint:

Model Splitting

Modelling of training time:

Regressor

Feature Processor

Edge-side model

End-side model

Edge 

Server

Feature 

Extractor

Smart 

Meter

Feature extractor and regressor involve privacy raw data 

Feature processor requires complex computation

Define split ratio       as 



Optimal splitting
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Solution for optimal split ratio:

We can calculate the upper bound and lower bound as:

The optimal split ratio can be formulated:
Computational power of edge server

Computational power of smart meter

Communication rate



Collaborative training

15

Parallelism:

○ Inspired by distributed optimization, we add an auxiliary 

network Wa as another regressor connected to We.

○ Here two trainable models are formed, namely:

Model Training

Hence, We and Wp can update their parameters in 

parallel with different loss functions as:

1. nearly half of the computational time is reduced

2. a quarter of the communication overhead is eliminated



Collaborative training
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Model Training

Therefore, we design the loss function by incorporating 

knowledge distillation to introduce the convergence 

of (1) as an objective into the optimization of We .

Knowledge distillation :

○ We serve as a parameter in the equation (1), while it only 

be optimized based on the loss in the equation (2). This 

lack of correlation may affect the convergence accuracy.

(1) 

(2) 



Semi-asynchronous aggregation
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End-edge synchronous aggregation:

○ We adopt the hardware configuration-based clustering 

algorithm to designate smart meters with similar training 

times to the same edge server.

○ Edge server aggregate intra-cluster smart meter’s models 

synchronously as:

Edge-cloud asynchronous aggregation:

○ Cloud server aggregate edge server’s model across all 

clusters asynchronously as:

Model aggregation

A two-stage approach can tackle the large-scale 

heterogeneity challenge of smart meters.



Contents

03   Case Studies

04   Other Applications

01   Introduction

02   Methodology

05   Discussion



Hardware platform
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○ When resource-constrained smart meter meet resource-intensive neural network training.

• Memory: 192KB SRAM and 1MB FLASH for numerous parameters. (16GB RAM and 1TB FLASH on PC)

• Computation: Microcontroller with 168MHz frequency for complex computation. (CPU with 4.9GHz frequency)

• Communication: RS485 with 115.2Kpbs rate for frequency transmission. (Wi-Fi with 300Mbps rate)

Edge intelligence on smart meters is a challenging task!



Case studies
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○ Datasets:

○ Building electricity load:

• BDG2

• hour-level resolution 

• 206-01-01 to 2017-12-31

○ Household electricity load :

• CBTs

• hour-level resolution(aggregated by 30min)

• 2009-07-01 to 2010-12-31

○ Benchmarks:

○ Centralized learning: Cen

○ Local learning: Local

○ Federated learning: FedAvg

○ Split learning: Split

○ Federated split learning:

• SFLV1

• SFLV2

• Proposed

○ Metrics:

○ Accuracy metrics: RMSE, MAPE, MAE

○ Efficiency metrics: Memory, Training time, Communication overhead



Results
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• Compared with the benchmark methods, the proposed method significantly improves the 

accuracy within the 192KB memory constraint.

• Compared with the benchmark methods, the proposed method saves more than 15x of 

memory with the same accuracy.

 Comparison of accuracy versus memory usage on smart meters with different model sizes



Results
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 Performance of different methods in terms of accuracy, memory, training time, and 

communication overhead per round.

• The proposed method reduces 95.6% memory footprint, 94.8% training time, and 50% communication overhead.



Results
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 Performance evaluation of the proposed method on different forecasting ranges

• Compared to the best-performing benchmarks in each task, our proposed model has at least 1.33%, 2.19%, 

and 3.27% improvement in terms of RMSE, MAPE, and MAE, respectively.



Results
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• The proposed method surpasses all other on-device feasible methods with different neural networks as the 

backbone

 Performance evaluation of the proposed method with different neural network backbones



Results
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 Comparison of electric cost, renewable energy accommodation ratio, and carbon emission 

for non-intelligent strategy and various edge intelligent methods.

• By adopting our approach, it is expected to save $1,176.11 in electricity costs per building annually and $18.93 in 

electricity costs per household annually.



Results
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4 hour-ahead Load Forecasting
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Monitoring: Framework
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① Search: personalized model is automatically 

searched from a supernet using memory-efficient 

NAS. The designed architecture varies depending 

on the appliances and households involved.

② Mutual Distillation: unified proxy model with same 

network architecture transfers global knowledge to 

and obtains local knowledge from the specialized 

personalized model via mutual distillation

③ Upload: the weight parameters of the proxy models 

are uploaded to the server for average aggregation

④ Distribute: The aggregated weight parameters are 

distributed to update the proxy model
Overview of the lightweight NILM framework

 The proposed NILM method aims to develop high-

performance models on end devices for accurately 

estimating appliance-level power consumption:



Monitoring: Memory-efficient NAS
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1. Compressed Search Space:

• To reduce the memory footprint, we compress all candidate convolutional operations per layer into a single net 

by sharing the kernel weights. Specifically, the weights of the small kernels can be viewed as the subnet of the 

large kernels.

where w3×3|1×1 and w5×5|3×3 denote the 3×3 and 5×5 convolutional kernels excluding subsets, respectively.



Monitoring: Memory-efficient NAS
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2. Single-Path Search Strategy:

• To decrease the memory consumption of architecture search to a level comparable to compact model training, 

we introduce path binarization, where only one path is selected for each round of updates.

where g denotes a binary vector and the value of variable gi indicates whether or not the i-th path is sampled. 



Monitoring: Memory-efficient NAS
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3. Hardware-Aware Evaluation:

• Real-time NILM imposes a time constraint on model inference latency to enable continuous monitoring. Hence, 

we attempt to achieve a trade-off between accuracy and latency when searching for the architecture of the 

personalized model.

where T0 denotes the time length of the sliding window used in NILM and T denotes the network latency.



Monitoring: Adaptive Mutual Learning
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To cope with the heterogeneity of personalized 

models, we adopt mutual distillation for federated 

learning by introducing unified proxy models with 

same architecture.

The beneficial information is bidirectionally transferred 

through knowledge distillation.

• Personalized model has tailored architecture, deeply 

drawn local knowledge guide proxy model training. 

• Proxy models are collaboratively aggregated among 

various devices, personalized model can benefit from 

global knowledge of proxy model.

 Each end device updates the personalized model 

and proxy model based on both label loss and 

mutual distillation loss between the two models. 



Monitoring: Results
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 Performance evaluation of different methods on real-world two datasets.

• Our proposed model, uniting the strength of architecture search and federation, shows the best performance.



Monitoring: Results
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 The searched network architecture for different appliances.

• For the fridge, the architecture of NAS includes 

few convolutional layers because cyclic power 

consumption patterns are easily identified. 

• By contrast, the searched network for the 

dishwasher integrates more convolutional layers 

to capture continuously varying power 

consumption characteristics. 

• For the microwave, the personalized model 

contains several pooling layers to focus on 

localized information of short duration.



Monitoring: Results
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 Comparison of training and testing efficiency for different methods.

Time ∼ 𝑂 ∑𝑙=1
𝐷 𝐾𝑙

∗ ⋅ 𝑀𝑙⋅ 𝐶𝑙−1 ⋅ 𝐶𝑙

Space ∼ 𝑂 ∑𝑙=1
𝐷 𝐾𝑙

∗ ⋅ 𝐶𝑙−1 ⋅ 𝐶𝑙 + ∑𝑙=1
𝐷 𝑀𝑙 ⋅ 𝐶𝑙

Time ∼ 𝑂 ∑𝑙=1
𝐷 ∑𝑖=1

𝑃 𝐾𝑙,𝑖 ⋅ 𝑀𝑙,𝑖 ⋅ 𝐶𝑙−1 ⋅ 𝐶𝑙

Space ∼ 𝑂 ∑𝑙=1
𝐷 ∑𝑖=1

𝑃 𝐾𝑙,𝑖 ⋅ 𝐶𝑙−1 ⋅ 𝐶𝑙 + ∑𝑙=1
𝐷 ∑𝑖=1

𝑃 𝑀𝑙,𝑖 ⋅ 𝐶𝑙 computational complexity is 
reduced by P times

Proposed:

The results show that the size of the customized architecture, i.e., the memory space required, is smaller than 

that of the fixed model. Moreover, the proposed hardware-aware method can decrease disaggregating time by 

more than 2.5 times.

NAS:



Decision-making: Framework
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Overview of the edge HEM framework

 To enable efficient RL for edge home 

energy management, our framework 

incorporates two critical techniques:

① Dynamic Sparse Learning:                 

the edge device trains sparse neural 

networks from scratch and dynamically 

adapts its topology to the changing data 

distribution during training

② Compressed Federate Learning:      

the edge devices utilize randomized SVD 

for gradient approximation to reduce the 

communication overhead in federated 

learning



Decision-making: Dynamic sparse learning
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1. Network Initialization:

The initial network connection follows the Erdös–Rényi

graph. The probability of the weight connection between 

the neurons can be expressed as:

2. Network Training:

The agent learns through trial and error cycles, collecting 

the data online while interacting with the environment.

The agent perform dynamic adaptation of the sparse 

topology after each training epoch as follows.



Decision-making: Dynamic sparse learning
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3. Adaptive Dropout:

The network dynamically drop a fraction of the weight 

closest to zero at each training epoch, which are 

considered as the least important:

The fraction of drops decreases gradually with training of 

reinforcement learning up to convergence

4. Gradient-oriented Growth:

Then, new weights are added in the same amount as the 

ones previously removed based on the gradient values.

Basic idea is that the more sensitive the loss is to changes in 

a weight during training, the more important that weight is.



Decision-making: Compressed federated learning
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Projecting matrices to lower dimensional linear 

subspaces greatly reduces costs of federated 

learning communication.

 Sparse characteristic of our networks enables 

the gradient, which retains only a small number 

of singular values, to contain almost all of the 

information entropy of the matrix.

Assuming that only k singulars are retained, the 

optimal approximation of the parameter matrix W is



Decision-making: Results
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 Power demand and supply of all loads with proposed scheduling method for 10 homes.

• The proposed method can effectively manage multiple flexible resources to minimize electricity costs. 



Decision-making: Results
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 Performance of different methods in terms of accuracy, memory, and communication overhead

per round.

• The proposed method reduces 78.2% memory footprint and 68.3% communication overhead without cost sacrifice



Decision-making: Results

42
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Discussion

○ Firstly, our research provides a feasible and efficient approach to exploiting the existing ubiquitous 

smart meters without the need for additional investment.

○ Secondly, our research provides new directions for broader edge intelligence applications in the 

smart grid. This will help consumers better exploit flexible resources to save costs and 

accommodate more distributed renewable energy, and also enable distribution system operators 

to better observe the system's status and manage the system to reduce operation costs and 

improve the reliability of the energy supply 

○ Thirdly, our research enables the utilization of distributed data in a privacy-preserving manner, 

which will increase consumers’ willingness for smart meter adoption, thus promoting smart meter 

penetration and contributing to the digitalization and decarbonization of smart grids. 

44

Our research is the first attempt to achieve complex model training on smart meters, which 

can achieve a wide impact and serve broad interests from three perspectives:



Thanks for your attention
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