Device Access Control of Wireless Networks for Demand Response in Smart Grids

Dr. Yi Wang Dept. of Electrical & Electronic Eng. The University of Hong Kong yiwang@eee.hku.hk http://www.eeyiwang.com/

Acknowledgement

Cheng Feng PhD Candidate @ THU

Chenyu Zhou Master Student @ ETH

More details of the presentation can be found by:

- Cheng Feng, Yi Wang*, Xuanyuan Wang, and Qixin Chen*, "Device Access Optimization for Virtual Power Plants in Heterogeneous Networks," IEEE Transactions on Smart Grid, in press.
- Chenyu Zhou, Cheng Feng, and Yi Wang*, "Spatial-Temporal Energy Management of Base Stations in Cellular Networks," IEEE Internet of Things Journal, in press.

- > Wireless Communication in Smart Grid
- Part 1: Energy Management of 5G Base Stations
- Part 2: Virtual Power Plant in Smart Grid
- Conclusions

Device Access Control

- Massive connections;
- Real-time monitoring and control.

Device Access Control

Energy consumption of 5G base station (BS)

Reducing the high energy consumption of BSs is an effective way to reduce the overall cost for the cellular wireless network operators.

[1] China Mobile Research Institute. White paper on 5G base station energy saving technology [EB/OL]. (2020-8-28) . https://max.book118.com/html/2020/0913/8 105107075002142.shtm.

[2]D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, "A survey of energy-efficient wireless communications," IEEE Communications Surveys Tutorials, vol. 15, no. 1, pp. 167–178, 2013.

Demand response potential

It seems that BSs have greater potential for demand response.

Characteristics of 5G Base Station

Configuration of 5G BS: 1 baseband unit (BBU), 3 active antenna units (AAU)

The **adjustable energy consumption** based on traffic load accounts for about **40%** of the total.

Spatial-temporal demand response

• **Spatial:** BSs can reasonably allocate the communication traffic load in the cellular network according to the real-time price differences among BSs.

Spatial-temporal demand response

• **Temporal:** The operations of BSs which are equipped with energy storage are temporally coupled by the charging/discharging behavior of energy storage.

Optimization Model

	BSs	MUs	Time periods
Number	1	М	Т
Set	В	Μ	т
Index	i	т	t

Objective function

To minimize the total electricity bill of all the BSs B during time periods T

Variable
$$p_{,E,X,W} \sum_{i \in B} \sum_{t \in T} p_{i,t} P_{i,t}^{N} \longrightarrow$$
 Net electricity
matrices $p_{i,E,X,W} \sum_{i \in B} \sum_{t \in T} p_{i,t} P_{i,t}^{N} \longrightarrow$ Net electricity
demand of BS
i at time *t*
Real-time
price of BS
i at time *t*

Optimization Model

Energy constraints	Static	Dynamic		
BS power consumption :			BS	
	$P_{i,t}^B = P_{i,t}^S + \mu$	$\beta P^D_{i,t}, \forall i,t$		(1)
Range of dynamic power consu	mption: _{Ene}	rgy efficiency		
	$0 \le P_{i,t}^D \le P_i^L$	$^{D,\max},\forall i,t$		(2)
Output of renewable energy:			PV	
	$0 \le P_{i,t}^R \le P_{i,t}^R$	$t_t^{R,\max}, \forall i, t$		(3)
Limits on charging/discharging p	oower:		Storage	
	$0 \le P_{i,t}^{c,S} \le P_i$	$S^{S,\max}, \forall i,t$		
	$0 \le P_{i,t}^{d,S} \le P_i$	$\sigma_{i}^{S,\max}, \forall i,t$		(4)

Optimization Model

Energy constraints

SoC of energy storage:

$$E_{i,t+1}^{S} = E_{i,t}^{S} + \eta_{i,c} P_{i,t}^{c,S} - P_{i,t}^{d,S} / \eta_{i,d}, \forall i,t$$
(5)

Range of SoC:

$$0 \le E_{i,t}^S \le E_i^{S,\max}, \forall i,t$$
(6)

SoC at starting time and ending time:

$$E_{i,1}^{S} = E_{i,T}^{S} = 0.5E_{i}^{S,\max}, \forall i,t$$
BS Storage (7)

Net electricity demand of BS:

$$P_{i,t}^{N} = P_{i,t}^{B} - P_{i,t}^{R} + P_{i,t}^{c,S} - P_{i,t}^{d,S}, \forall i,t$$
(8)

Reversible charging not allowed:

$$P_{i,t}^{N} \ge 0, \forall i, t \tag{9}$$

Storage

RS

Optimization Model

Communication constraints

User association binary variable: $x_{i,m,t} \in \{0,1\}, \forall i,m,t$ (10)Each MU connected to one and only one BS: $\sum x_{i,m,t} = 1, \forall i,m,t$ (11)Signal-to-interference-plus-noise ratio (SINR): $\phi_{i,m,t} = \frac{P_{i,t}^{D} g_{i,m}}{\sigma^{2} + \sum_{j \in B, j \neq i} P_{j,t}^{D} g_{j,m}}, \forall i, m, t$ Interference power (12)Channel gain: Noise power $g_{i,m} = \begin{cases} A\left(\frac{d_{i,m}}{d_0}\right)^{-\alpha} \xrightarrow{} \text{Path loss exponent} \\ , d_{i,m} \ge d_0, \\ A, & 0 \le d_{i,m} < d_0, \end{cases} \quad \forall i,m$ (13)Fixed path loss

Optimization Model

Iterative algorithm

Decomposes the original optimization problem into two sub-problems. The two sub-problems are solved iteratively until convergence to find the local optimal solution of the original optimization problem.

Solution Methodology

Solving process of iterative algorithm

Energy Optimization Sub-problem (LP problem):

Decision variable: dynamic power consumptions, output of renewable energy, charging/discharging power and SoC of energy storage

Parameter: user associations, bandwidth allocations

Objective: minimize total cost

$$\min_{P,E} \sum_{i \in \mathbb{B}} \sum_{t \in \mathbb{T}} p_{i,t} P_{i,t}^{N}$$

s.t. (1)-(9), (12)-(15)
energy transmiss

energy transmission constraints rate constraints

User Association Optimization Sub-problem (MILP problem):

Decision variable: user associations, bandwidth allocations

Parameter: dynamic power consumptions

Objective: maximize each MU's transmission rate, provide more optimization space for the energy optimization sub-problem

$$\max_{X,W,\phi \ge 0} \varphi$$

s.t. $\sum_{i \in \mathbf{B}} R_{i,m,t} \ge R_{m,t}^{req} + \varphi, \forall m, t$
(10)-(14),(16)-(17)
communication
constraints

Case Studies

Traditional case study

I = 100, M = 5000, T = 24. In 100 km² area, BSs are uniformly distributed, MUs are randomly distributed. Distance between two BSs is 1km. Coverage radius of each BS is 750m. User associations of **3236** MUs can be optimized.

Case Studies

Results and analysis

Four scenarios are proposed, which have the same background and parameters.

Scenario	Initial value type	User associations	Bandwidth allocations	
1	Distance-prioritized	Can be optimized	Can be optimized	
2	Price-prioritized	Can be optimized	Can be optimized	
3	Distance-prioritized	Fixed	Can be optimized	
4	Price-prioritized	Fixed	Can be optimized	

Case Studies

Results and analysis

Consider distance and real-time price factors for user associations comprehensively

	rio Type of initial value	(\$)	(kWh)	power consumption (\$)	power consumption (kWh)	${f time}\ ({f min})$
1	Distance-prioritized $(\delta=0.5)$	166.49	6927.74	34.01	1407.74	48.91
3	Distance-prioritized	186.34	7753.14	53.86	2233.14	19.82

Only consider distance factor for user associations

Compared with scenario 3, total cost and total electricity of scenario 1 are reduced by about **10.6%**.

Case Studies

Results and analysis

Consider real-time price and distance factors for user associations comprehensively

Scen	ario	Type of initial value	Total cost (\$)	Total electricity (kWh)	Cost of dynamic power consumption (\$)	Electricity of dynamic power consumption (kWh)	Calculation time (min)
2	2	Price-prioritized	177.8	7759.42	45.32	2239.42	21.78
4	Į	Price-prioritized	197.05	8599.58	64.58	3079.58	14.45

Only consider real-time price factor for user associations

Compared to scenario 4, the total cost and total electricity of scenario 2 are reduced by about **9.8%**.

Communication Structure of VPP

Communication Structure of VPP

The control perspective diagram

Why need device access optimization?

Problem Formulation

Objective: to minimize the total expected revenue reduction due to packet loss C.

Adverse Effects of Packet Loss

Perfect transmission:

Adverse Effects of Packet Loss

Uplink packet loss:

Adverse Effects of Packet Loss

Downlink packet loss:

Problem Formulation

Objective: to minimize the total expected revenue reduction due to packet loss C.

Packet Loss Rate of Wifi:

The probability of collision

Due to the fact that Wi-Fi uses an unlicensed spectrum, it may suffer a low signal-to-noise ratio (SNR) and so induce packet loss when the SNR ratio falls below the outage threshold.

$$\theta_m = \theta_{m,\rm co} + \theta_{m,\rm SNR} - \theta_{m,\rm co} \theta_{m,\rm SNR}$$

Packet Loss Rate of Cellular:

The total frequency-time resources are finite. When the number of devices that need to be served increases, a device will wait for longer periods of time for BSs to get its required resources.

Then the probability that devices get unserved and its packet is abandoned as

$$\theta_{m} = \left(N_{m} - \min\left(\lfloor\frac{b_{\text{remain}}}{b_{\text{device}}}\rfloor, N_{m}\right)\right) / N_{m}$$
$$b_{\text{device}} = \left\lceil r/r_{\text{RB}} \right\rceil \ b_{\text{user}} = \left\lceil r_{m}/r_{\text{RB}} \right\rceil$$
$$b_{\text{remain}} = t_{\text{d}} b_{\text{RB-sfr}}^{(\text{share})} - k b_{\text{user}}$$

Problem Formulation

$$\min C = \begin{bmatrix} p_{up} \odot (\mathbf{1}_N - p_{down}) \\ (\mathbf{1}_N - p_{up}) \odot p_{down} \\ p_{up} \odot p_{down} \end{bmatrix} \begin{bmatrix} U_{pe} - U_{up} \\ U_{pe} - U_{down} \\ U_{pe} - U_{updown} \end{bmatrix}^{\mathrm{T}}$$
$$\approx \underbrace{p_{up} (U_{pe} - U_{up})^{\mathrm{T}}}_{C_{up}} + \underbrace{p_{down} (U_{pe} - U_{down})^{\mathrm{T}}}_{C_{down}}$$

Solution Algorithm

Case Studies

TABLE I DISTRIBUTED DEVICE SETTING

	Tuna	Device	α (kW)	Conn	ectable 1	AP	Aroo
	Type	Quantity	$q_n(\mathbf{k} \mathbf{v} \mathbf{v})$	Wi-Fi	LTE	5G	Alea
R	esidence Load	45000×3	0.5-2	1	1	2	Res.
ł	Building Load	45×10	50-200	1	1	2	All
I	ndustrial Load	10×10	$100 - 10^3$	1	1	2	Ind.
	Generator	4	$100-2 \times 10^{3}$	0	1	2	All
E	nergy Storage	2000	10-20	1	1	2	All
C	harging Station	8000	5-20	1	1	2	All

Case Studies

TABLE II Iteration Results

Saanaria	Uplink		Ľ	Cost	
Scenario	PLR	PLR (filtered)	PLR	PLR (filtered)	C(\$)
Full	0.0159	0.0159	0.0241	0.0241	1267.7
IM	0.1101	0.1101	0.1101	0.1101	4762.2
Case A	0.1014	0.0125	0.1107	0.0227	402.3
Case B	0.1583	0.0139	0.165	0.0217	420.6
Case C	0.1000	0.0110	0.110	0.0220	390.2

Conclusions

- Relationship between power flow and information flow?
 - Information flow -> virtual power flow
 - Information flow failure -> power flow unbalance
- Whose demand response?
 - For communication networks
 - For power networks
- What can be done in the future?
 - Network slicing for smart grid?
 - Joint planning of power and communication networks?

Thanks for your attention!

Dr. Yi Wang Dept. of Electrical & Electronic Eng. The University of Hong Kong yiwang@eee.hku.hk http://www.eeyiwang.com/